The Mahalanobis distance

被引:1606
|
作者
De Maesschalck, R [1 ]
Jouan-Rimbaud, D [1 ]
Massart, DL [1 ]
机构
[1] Free Univ Brussels, Dept Pharmacol & Biomed Anal, Inst Pharmaceut, ChemoAC, B-1090 Brussels, Belgium
关键词
Mahalanobis distance; Euclidean distance; principal components;
D O I
10.1016/S0169-7439(99)00047-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The theory of many multivariate chemometrical methods is based on the measurement of distances. The Mahalanobis distance (MD), in the original and principal component (PC) space, will be examined and interpreted in relation with the Euclidean distance (ED). Techniques based on the MD and applied in different fields of chemometrics such as in multivariate calibration, pattern recognition and process control are explained and discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Mahalanobis distance
    G. J. McLachlan
    [J]. Resonance, 1999, 4 (6) : 20 - 26
  • [2] Optimal Distance Bounds for the Mahalanobis Distance
    Emrich, Tobias
    Josse, Gregor
    Kriegel, Hans-Peter
    Mauder, Markus
    Niedermayer, Johannes
    Renz, Matthias
    Schubert, Matthias
    Zuefle, Andreas
    [J]. SIMILARITY SEARCH AND APPLICATIONS (SISAP), 2013, 8199 : 175 - 181
  • [3] Graphical modelling and the Mahalanobis distance
    Bedrick, EJ
    [J]. JOURNAL OF APPLIED STATISTICS, 2005, 32 (09) : 959 - 967
  • [4] Mahalanobis distance informed by clustering
    Lahav, Almog
    Talmon, Ronen
    Kluger, Yuval
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (02) : 377 - 406
  • [5] On mahalanobis distance in functional settings
    Berrendero, José R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    [J]. Journal of Machine Learning Research, 2020, 21
  • [6] Bounds for the largest Mahalanobis distance
    Gath, Eugene G.
    Hayes, Kevin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (01) : 93 - 106
  • [7] Holodiagrams using Mahalanobis distance
    Rabal, H.
    Cap, N.
    Criado, C.
    Alamo, N.
    [J]. OPTIK, 2012, 123 (19): : 1725 - 1731
  • [8] An interesting property of the Mahalanobis distance
    Steerneman, T
    Wansbeek, T
    [J]. ECONOMETRIC THEORY, 1999, 15 (06) : 904 - 905
  • [9] EXPECTATION OF MAHALANOBIS GENERALIZED DISTANCE
    DAVIES, MG
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1972, 24 (01) : 111 - 125
  • [10] On Mahalanobis Distance in Functional Settings
    Berrendero, Jose R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21