Bounds for the largest Mahalanobis distance

被引:27
|
作者
Gath, Eugene G. [1 ]
Hayes, Kevin [1 ]
机构
[1] Univ Limerick, Dept Math & Stat, Limerick, Ireland
关键词
Mahalanobis distance; Lagrange; multivariate outlier; bound; inequality;
D O I
10.1016/j.laa.2006.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Upper and lower bounds for the magnitude of the largest Mahalanobis distance, calculated from n multivariate observations of length p, are derived. These bounds are multivariate extensions of corresponding bounds that arise for the most deviant Z-score calculated from a univariate sample of size n. The approach taken is to pose optimization problems in a mathematical context and to employ variational methods to obtain solutions. The attainability of the bounds obtained is demonstrated. Bounds for related quantities (elements of the "hat matrix") are also derived. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [1] Optimal Distance Bounds for the Mahalanobis Distance
    Emrich, Tobias
    Josse, Gregor
    Kriegel, Hans-Peter
    Mauder, Markus
    Niedermayer, Johannes
    Renz, Matthias
    Schubert, Matthias
    Zuefle, Andreas
    [J]. SIMILARITY SEARCH AND APPLICATIONS (SISAP), 2013, 8199 : 175 - 181
  • [2] SELECTING THE NORMAL POPULATION WITH LARGEST (SMALLEST) VALUE OF MAHALANOBIS DISTANCE FROM THE ORIGIN
    CHATTOPADHYAY, AK
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1981, 10 (01): : 31 - 37
  • [3] Mahalanobis distance
    G. J. McLachlan
    [J]. Resonance, 1999, 4 (6) : 20 - 26
  • [4] The Mahalanobis distance
    De Maesschalck, R
    Jouan-Rimbaud, D
    Massart, DL
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 50 (01) : 1 - 18
  • [5] Bounds for a multivariate extension of range over standard deviation based on the Mahalanobis distance
    Gath, E. G.
    Hayes, K.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (06) : 1267 - 1276
  • [6] Bounds on mahalanobis norms and their applications
    Jensen, DR
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 264 : 127 - 139
  • [7] Graphical modelling and the Mahalanobis distance
    Bedrick, EJ
    [J]. JOURNAL OF APPLIED STATISTICS, 2005, 32 (09) : 959 - 967
  • [8] Mahalanobis distance informed by clustering
    Lahav, Almog
    Talmon, Ronen
    Kluger, Yuval
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (02) : 377 - 406
  • [9] On mahalanobis distance in functional settings
    Berrendero, José R.
    Bueno-Larraz, Beatriz
    Cuevas, Antonio
    [J]. Journal of Machine Learning Research, 2020, 21
  • [10] Holodiagrams using Mahalanobis distance
    Rabal, H.
    Cap, N.
    Criado, C.
    Alamo, N.
    [J]. OPTIK, 2012, 123 (19): : 1725 - 1731