"Mechanically Docked" Metallodendrimers about Single-Walled Carbon Nanotubes

被引:15
|
作者
Chaturvedi, Harsh
Giordano, Andrea N.
Kim, Mahn-Jong
MacDonnell, Frederick M.
Subaran, Sarah S.
Poler, Jordan C. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Charlotte, NC 28223 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2009年 / 113卷 / 26期
基金
美国国家科学基金会;
关键词
NONCOVALENT SIDEWALL-FUNCTIONALIZATION; SOLVENT DISPERSIONS; RAMAN-SPECTROSCOPY; COMPLEXES; WATER; SOLUBILIZATION; ABSORPTION; DENDRIMERS; SCATTERING; NANOHYBRID;
D O I
10.1021/jp902229v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report experimental support for "mechanical docking" of an optically active rigid molecule, ruthenium metallodendrimer (decamer), to single-walled carbon nanotubes (SWNTs) with some diameter selectivity. Binding of these rigid metallodendrimers onto dispersed single-walled carbon nanotubes has been studied by Raman and UV-vis-near-infrared (NIR) absorption spectroscopy. Atomic force and scanning electron micrographs indicate strong binding of these molecules specifically to the ends of nanotubes and are consistent with the spectroscopic evidence for diameter selectivity presented here. Near-IR absorption and radial breathing mode Raman spectra of these "end-functionalized" SWNTs show preferential diameter-selective separation, along with a red shift of the optical transitions. A con central ion-dependent red shift is observed for the NIR absorption for decamer-bound nanotubes. This indicates a strong interaction between selective SWNTs and the decamer, forming a mechanically docked supramolecular complex. Spectral shifts and intensity variations in specific radial breathing mode bands of the functionalized SWNTs are complementary to our observations of the UV-vis-NIR absorption spectra and atomic force microscopy data.
引用
收藏
页码:11254 / 11261
页数:8
相关论文
共 50 条
  • [21] Functionalization of single-walled carbon nanotubes
    Hirsch, A
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (11) : 1853 - 1859
  • [22] Iodination of single-walled carbon nanotubes
    Coleman, Karl S.
    Chakraborty, Amit K.
    Bailey, Sam R.
    Sloan, Jeremy
    Alexander, Morgan
    CHEMISTRY OF MATERIALS, 2007, 19 (05) : 1076 - 1081
  • [23] Nucleation of single-walled carbon nanotubes
    Fan, X
    Buczko, R
    Puretzky, AA
    Geohegan, DB
    Howe, JY
    Pantelides, ST
    Pennycook, SJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (14)
  • [24] On the vibrations of single-walled carbon nanotubes
    Arghavan, S.
    Singh, A. V.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (13) : 3102 - 3122
  • [25] Bioelectrochemical single-walled carbon nanotubes
    Azamian, BR
    Davis, JJ
    Coleman, KS
    Bagshaw, CB
    Green, MLH
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (43) : 12664 - 12665
  • [26] Rings of single-walled carbon nanotubes
    Martel, R
    Shea, HR
    Avouris, P
    NATURE, 1999, 398 (6725) : 299 - 299
  • [27] On diffusion of single-walled carbon nanotubes
    Rudyak, V. Ya.
    Tretiakov, D. S.
    THERMOPHYSICS AND AEROMECHANICS, 2020, 27 (06) : 847 - 855
  • [28] Toxicity of single-walled carbon nanotubes
    Ong, Li-Chu
    Chung, Felicia Fei-Lei
    Tan, Yuen-Fen
    Leong, Chee-Onn
    ARCHIVES OF TOXICOLOGY, 2016, 90 (01) : 103 - 118
  • [29] Hydrogenation of single-walled carbon nanotubes
    Nikitin, A
    Ogasawara, H
    Mann, D
    Denecke, R
    Zhang, Z
    Dai, H
    Cho, K
    Nilsson, A
    PHYSICAL REVIEW LETTERS, 2005, 95 (22)
  • [30] Piezoresistance of single-walled carbon nanotubes
    Stampfer, C.
    Helbling, T.
    Jungen, A.
    Hierold, C.
    TRANSDUCERS '07 & EUROSENSORS XXI, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2007,