Monochromatic bounded degree subgraph partitions

被引:11
|
作者
Grinshpun, Andrey [1 ]
Sarkoezy, Gabor N. [2 ,3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[3] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
关键词
Ramsey theorem; Monochromatic partitions; LINEAR RAMSEY NUMBERS; K-REGULAR GRAPHS; BLOW-UP LEMMA; CYCLE PARTITIONS; VERTEX PARTITIONS; HAMILTONIAN CYCLE; BIPARTITE GRAPHS; HYPERGRAPHS; SQUARE; PATHS;
D O I
10.1016/j.disc.2015.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Y = {F-1, F-2,...} be a sequence of graphs such that F-n, is a graph on n vertices with maximum degree at most Delta. We show that there exists an absolute constant C such that the vertices of any 2-edge-colored complete graph can be partitioned into at most 2(C Delta log Delta) vertex disjoint monochromatic copies of graphs from F. If each F-n is bipartite, then we can improve this bound to 2(C Delta); this result is optimal up to the constant C. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 50 条