Tiling with monochromatic bipartite graphs of bounded maximum degree

被引:0
|
作者
Girao, Antonio [1 ]
Janzer, Oliver [2 ]
机构
[1] Heidelberg Univ, Inst Informat, Heidelberg, Germany
[2] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
关键词
RAMSEY NUMBERS; CYCLES;
D O I
10.1112/mtk.12280
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for any r is an element of N, there exists a constant C-r such that the following is true. Let F={F1,F2,...}be an infinite sequence of bipartite graphs such that |V(F-i)|=i| and Delta(F-i) <= Delta hold for all i. Then, in any r-edge-coloured complete graph K-n, there is a collection of at most exp(C-r Delta) monochromatic subgraphs, each of which is isomorphic to an element of F, whose vertex sets partition V(K-n). This proves a conjecture of Corsten and Mendonca in a strong form and generalises results on the multi-colour Ramsey numbers of bounded-degree bipartite graphs. It also settles the bipartite case of a general conjecture of Grinshpun and Sarkozy.
引用
下载
收藏
页数:22
相关论文
共 50 条
  • [1] BIPARTITE INDEPENDENCE NUMBER IN GRAPHS WITH BOUNDED MAXIMUM DEGREE
    Axenovich, Maria
    Sereni, Jean-Sebastien
    Snyder, Richard
    Weber, Lea
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 1136 - 1148
  • [2] Tiling Edge-Coloured Graphs with Few Monochromatic Bounded-Degree Graphs
    Corsten, Jan
    Mendonca, Walner
    COMBINATORICA, 2024, 44 (02) : 311 - 335
  • [3] Tiling Edge-Coloured Graphs with Few Monochromatic Bounded-Degree Graphs
    Jan Corsten
    Walner Mendonça
    Combinatorica, 2024, 44 : 311 - 335
  • [4] TILING EDGE-COLOURED GRAPHS WITH FEW MONOCHROMATIC BOUNDED-DEGREE GRAPHS
    Corsten, J.
    Mendonca, W.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 561 - 566
  • [5] Sum coloring of bipartite graphs with bounded degree
    Malafiejski, M
    Giaro, K
    Janczewski, R
    Kubale, M
    ALGORITHMICA, 2004, 40 (04) : 235 - 244
  • [6] Sum Coloring of Bipartite Graphs with Bounded Degree
    Michal Malafiejski
    Krzysztof Giaro
    Robert Janczewski
    Marek Kubale
    Algorithmica , 2004, 40 : 235 - 244
  • [7] Bipartite subgraphs of graphs with maximum degree three
    Bylka, SA
    Idzik, A
    Komar, J
    GRAPHS AND COMBINATORICS, 1999, 15 (02) : 129 - 136
  • [8] Bipartite Subgraphs of Graphs with Maximum Degree Three
    Stanisław Bylka
    Adam Idzik
    Jan Komar
    Graphs and Combinatorics, 1999, 15 : 129 - 136
  • [9] INDUCED MATCHINGS IN GRAPHS OF BOUNDED MAXIMUM DEGREE
    Joos, Felix
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1876 - 1882
  • [10] Distributed Maximum Matching in Bounded Degree Graphs
    Even, Guy
    Medina, Moti
    Ron, Dana
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, 2015,