Spherically symmetrical properties of expansion coefficients for translation of spherical harmonics

被引:9
|
作者
Guseinov, II [1 ]
机构
[1] BAKU STATE UNIV, FAC PHYS, BAKU, AZERBAIJAN
来源
关键词
expansion coefficient; spherical harmonic;
D O I
10.1016/S0166-1280(96)04507-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A theorem regarding the angular dependence has been established for the expansion coefficients for translation of spherical harmonics (SH): If we add the products of all the translation coefficients with the same l values, but different m's, the result is independent of orientation. The spherically symmetrical properties of the translation coefficients K-lm,K-l'm' for SH obtained in the present paper and, the rotation coefficients T-lm,l'm'(lambda), the two-center overlap integrals over arbitrary atomic orbitals S-nlm,S-n'l'm' and the translation coefficients V-nlm,n'l'm'(N) for Slater-type orbitals (STO's) given recently by the author [I.I. Guseinov, J. Mel. Struct. (Theochem), 343 (1995) 173] are the same. The analytical formulas also have been derived for translation coefficients of SH in terms of binomial coefficients. The final results are especially useful for machine computations of arbitrary multi-electron molecular integrals for which the series expansion formulas have recently been derived by the author.
引用
收藏
页码:83 / 86
页数:4
相关论文
共 50 条
  • [21] A coupled spherical harmonics expansion model for confined particles
    Bourgade, JP
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (08): : 1133 - 1165
  • [22] A FAST ALGORITHM FOR EXPANSION OVER SPHERICAL-HARMONICS
    FRUMKIN, M
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1995, 6 (06) : 333 - 343
  • [23] Bounds of the expansion coefficients of composites reinforced by spherically isotropic particles
    Linghui H.
    Renhuai L.
    [J]. Applied Mathematics and Mechanics, 1997, 18 (4) : 341 - 348
  • [24] Bounds of the expansion coefficients of composites reinforced by spherically isotropic particles
    He, LH
    Liu, RH
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1997, 18 (04) : 341 - 348
  • [25] BOUNDS OF THE EXPANSION COEFFICIENTS OF COMPOSITES REINFORCED BY SPHERICALLY ISOTROPIC PARTICLES
    何陵辉
    刘人怀
    [J]. Applied Mathematics and Mechanics(English Edition), 1997, (04) : 341 - 348
  • [26] CLEBSCH-GORDAN COEFFICIENTS,SPHERICAL HARMONICS,AND d FUNCTIONS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    [J]. Chinese Physics C, 2014, (09) : 505 - 505
  • [27] Some characterizations of the spherical harmonics coefficients for isotropic random fields
    Baldi, Paolo
    Marinucci, Domenico
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (05) : 490 - 496
  • [28] Clebsch-gordan coefficients, spherical harmonics, andd functions
    [J]. The European Physical Journal C - Particles and Fields, 2000, 15 (1-4): : 208 - 208
  • [29] IMPROVED CONFIDENCE SETS FOR THE COEFFICIENTS OF A LINEAR-MODEL WITH SPHERICALLY SYMMETRICAL ERRORS
    HWANG, JT
    CHEN, J
    [J]. ANNALS OF STATISTICS, 1986, 14 (02): : 444 - 460
  • [30] CLEBSCH-GORDAN COEFFICIENTS,SPHERICAL HARMONICS,AND d FUNCTIONS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D'Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    [J]. Chinese Physics C, 2014, 38 (09) : 505