A note on space noncommutativity

被引:34
|
作者
Yin, Z [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-2693(99)01124-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a two-point spatial lattice approximation to an open string moving in a fiat background with B field. It gives a constrained dipole system under the influence of a vector potential. Solving and quantizing this system recover all the essential features of a noncommutative space. In particular, open string interactions induce a canonical product structure on the Hilbert space of the dipole system. It coincides with the usual star product, even though the position operators can be thought of as mutually commuting. Modification of gauge transformations in this noncommutative space also naturally emerges. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 50 条
  • [21] Phase-space noncommutativity and the thermodynamics of the Landau system
    Halder, Aslam
    Gangopadhyay, Sunandan
    MODERN PHYSICS LETTERS A, 2017, 32 (20)
  • [22] Coherent quantum squeezing due to the phase space noncommutativity
    Bernardini, Alex E.
    Mizrahi, Salomon S.
    PHYSICA SCRIPTA, 2015, 90 (07)
  • [23] Planar field theories with space-dependent noncommutativity
    Fosco, CD
    Torroba, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (16): : 3695 - 3707
  • [24] Duality rotations and BPS monopoles with space and time noncommutativity
    Aschieri, P
    NUCLEAR PHYSICS B, 2001, 617 (1-3) : 321 - 347
  • [25] Noncommutativity in space-time extended by Liouville field
    Nikolic, Bojan
    Sazdovic, Branislav
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (01) : 1 - 27
  • [26] Unitary quantum physics with time-space noncommutativity
    Balachandran, AP
    Govindarajan, TR
    Martins, AG
    Molina, C
    Teotonio-Sobrinho, P
    VI MEXICAN SCHOOL ON GRAVITATION AND MATHEMATICAL PHYSICS, 2005, 24 : 179 - 202
  • [27] Unitary quantum physics with time-space noncommutativity
    Balachandran, AP
    Govindarajan, TR
    Mendes, CM
    Teotonio-Sobrinho, P
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10):
  • [28] Kinematic variables in noncommutative phase space and parameters of noncommutativity
    Gnatenko, Kh. P.
    MODERN PHYSICS LETTERS A, 2017, 32 (31)
  • [29] Space noncommutativity corrections to the Cardy-Verlinde formula
    Setare, M. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (13-14): : 3007 - 3013
  • [30] Space-time noncommutativity from particle mechanics
    Pinzul, A
    Stern, A
    PHYSICS LETTERS B, 2004, 593 : 279 - 286