A note on space noncommutativity

被引:34
|
作者
Yin, Z [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-2693(99)01124-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a two-point spatial lattice approximation to an open string moving in a fiat background with B field. It gives a constrained dipole system under the influence of a vector potential. Solving and quantizing this system recover all the essential features of a noncommutative space. In particular, open string interactions induce a canonical product structure on the Hilbert space of the dipole system. It coincides with the usual star product, even though the position operators can be thought of as mutually commuting. Modification of gauge transformations in this noncommutative space also naturally emerges. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 50 条
  • [1] A note on noncommutativity
    Dvoeglazov, Valeriy V.
    PHYSICS ESSAYS, 2018, 31 (03) : 340 - 341
  • [2] World volume noncommutativity versus target space noncommutativity
    Kato, M
    Kuroki, T
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (03):
  • [3] Space and momentum space noncommutativity: Monopoles
    Sidharth, B. G.
    Das, Abhishek
    CHAOS SOLITONS & FRACTALS, 2017, 96 : 85 - 89
  • [4] Noncommutativity in compactification moduli space
    Evslin, J
    STRING THEORY, 2002, 607 : 301 - 302
  • [5] Noncommutativity in space and primordial magnetic field
    Mazumdar, A
    Sheikh-Jabbari, MM
    PHYSICAL REVIEW LETTERS, 2001, 87 (01) : 1 - 011301
  • [6] Physical systems in a space with noncommutativity of coordinates
    Gnatenko, Kh. P.
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [7] Entanglement due to noncommutativity in phase space
    Bastos, Catarina
    Bernardini, Alex E.
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    PHYSICAL REVIEW D, 2013, 88 (08):
  • [8] Classical electrodynamics in a space with spin noncommutativity of coordinates
    Vasyuta, V. M.
    Tkachuk, V. M.
    PHYSICS LETTERS B, 2016, 761 : 462 - 468
  • [9] Phase-space noncommutativity and the Dirac equation
    Bertolami, Orfeu
    Queiroz, Raquel
    PHYSICS LETTERS A, 2011, 375 (46) : 4116 - 4119
  • [10] DISCRETE FIELD THEORIES THROUGH SPACE NONCOMMUTATIVITY
    Acatrinei, Ciprian Sorin
    ROMANIAN JOURNAL OF PHYSICS, 2020, 65 (3-4):