Bayesian change detection for multi-temporal SAR images

被引:0
|
作者
Coulon, M [1 ]
Tourneret, AY [1 ]
机构
[1] TeSA, ENSEEIHT, F-31071 Toulouse 7, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper addresses the problem of estimating abrupt changes in synthetic aperture radar (SAR) images. The problem is formulated as a Bayesian estimation problem, Appropriate priors allow to take into account the correlations between images recorded at different dates. Unfortunately, the posterior distribution of the unknown parameters cannot be expressed in closed-form, The proposed Bayesian implementation consists of generating samples distributed according this posterior by using MCMC methods. These samples are then used to estimate various interesting features including the posterior changepoint probabilities and the posterior changepoint number. Simulations on synthetic data illustrate the proposed methodology.
引用
收藏
页码:1285 / 1288
页数:4
相关论文
共 50 条
  • [41] A Novel Method of Unsupervised Change Detection Using Multi-Temporal PolSAR Images
    Liu, Wensong
    Yang, Jie
    Zhao, Jinqi
    Yang, Le
    [J]. REMOTE SENSING, 2017, 9 (11):
  • [42] Multivariate Statistical Modeling for Multi-Temporal SAR Change Detection using Wavelet Transforms
    Bouhlel, Nizar
    Ginolhac, Guillaume
    Jolibois, Eric
    Atto, Abdourrahmane
    [J]. 2015 8TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTI-TEMP), 2015,
  • [43] Change detection of small objects and linear features in multi-temporal polarimetric images
    Dierking, W
    Schou, J
    Skriver, H
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1693 - 1695
  • [44] SAR IMAGE CHANGE DETECTION BY LIKELIHOOD RATIO TEST IN MULTI-TEMPORAL TIME SERIES
    Su, Xin
    Deledalle, Charles-Alban
    Tupin, Florence
    Sun, Hong
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3439 - 3442
  • [45] EARTHQUAKE-INDUCED BUILDING DETECTION BASED ON OBJECT-LEVEL TEXTURE FEATURE CHANGE DETECTION OF MULTI-TEMPORAL SAR IMAGES
    Li, Qiang
    Gong, Lixia
    Zhang, Jingfa
    [J]. BOLETIM DE CIENCIAS GEODESICAS, 2018, 24 (04): : 442 - 469
  • [46] Semi-supervised change detection method for multi-temporal hyperspectral images
    Yuan, Yuan
    Lv, Haobo
    Lu, Xiaoqiang
    [J]. NEUROCOMPUTING, 2015, 148 : 363 - 375
  • [47] Review of Change Detection Methods Using Multi-Temporal Remotely Sensed Images
    Yin Shou-jing
    Wu Chuan-qing
    Wang Qiao
    Ma Wan-dong
    Zhu Li
    Yao Yan-juan
    Wang Xue-lei
    Wu Di
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (12) : 3339 - 3342
  • [48] Bayesian feature selection for classifying multi-temporal SAR and TM data
    Yamagata, Y
    Oguma, H
    [J]. IGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENT, 1997, : 978 - 980
  • [49] Change detection by classification of a multi-temporal image
    Gorte, B
    [J]. INTEGRATED SPATIAL DATABASES: DIGITAL IMAGES AND GIS, 1999, 1737 : 105 - 121
  • [50] Detection of Collapsed Bridges from Multi-Temporal SAR Intensity Images by Machine Learning Techniques
    Liu, Wen
    Maruyama, Yoshihisa
    Yamazaki, Fumio
    [J]. REMOTE SENSING, 2021, 13 (17)