Asymptotic Green's functions for time-fractional diffusion equation and their application for anomalous diffusion problem

被引:12
|
作者
Zhokh, Alexey A. [1 ]
Trypolskyi, Andrey I. [1 ]
Strizhak, Peter E. [1 ]
机构
[1] LV Pisarzhevskii Inst Phys Chem, Prospect Nauki 31, UA-03028 Kiev, Ukraine
关键词
Asymptotic Green's function; Time-fractional diffusion; Anomalous diffusion;
D O I
10.1016/j.physa.2017.02.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Asymptotic Green's functions for short and long times for time-fractional diffusion equation, derived by simple and heuristic method, are provided in case if fractional derivative is presented in Caputo sense. The applicability of the asymptotic Green's functions for solving the anomalous diffusion problem on a semi-infinite rod is demonstrated. The initial value problem for longtime solution of the time-fractional diffusion equation by Green's function approach is resolved. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 81
页数:5
相关论文
共 50 条
  • [21] Regularization of the Final Value Problem for the Time-Fractional Diffusion Equation
    Mohammad F. Al-Jamal
    Kamal Barghout
    Nidal Abu-Libdeh
    Iranian Journal of Science, 2023, 47 : 931 - 941
  • [22] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [23] Asymptotic analysis of time-fractional quantum diffusion
    Hislop, Peter D.
    Soccorsi, Eric
    APPLIED MATHEMATICS LETTERS, 2024, 152
  • [24] Analysis of asymptotic behavior of the Caputo-Fabrizio time-fractional diffusion equation
    Jia, Jinhong
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2023, 136
  • [25] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [26] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [27] Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative
    Zhiyuan LI
    Xinchi HUANG
    Masahiro YAMAMOTO
    Chinese Annals of Mathematics,Series B, 2025, (01) : 115 - 138
  • [28] Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative
    Li, Zhiyuan
    Huang, Xinchi
    Yamamoto, Masahiro
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 115 - 138
  • [29] FILTER REGULARIZATION FOR AN INVERSE SOURCE PROBLEM OF THE TIME-FRACTIONAL DIFFUSION EQUATION
    Shi, Wan-Xia
    Xiong, Xiang-Tuan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1702 - 1719
  • [30] An Inverse Source Problem with Sparsity Constraint for the Time-Fractional Diffusion Equation
    Ruan, Zhousheng
    Yang, Zhijian
    Lu, Xiliang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2016, 8 (01) : 1 - 18