Interfacial transport in lithium-ion conductors

被引:9
|
作者
Wang, Shaofei [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ionic conductivity; diffusion; interface; grain boundary; lithium battery; impedance; nuclear magnetic resonance; POLYMER ELECTROLYTES; LI-ION; CERAMIC ELECTROLYTE; DIFFUSION; NANOCRYSTALLINE; CONDUCTIVITY; IMPEDANCE; POLARIZATION; RELAXATION; NMR;
D O I
10.1088/1674-1056/25/1/018202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the way to high-conductivity single lithium-ion conductors
    E. Strauss
    S. Menkin
    D. Golodnitsky
    Journal of Solid State Electrochemistry, 2017, 21 : 1879 - 1905
  • [22] Anion-Rectifying Polymeric Single Lithium-Ion Conductors
    Cho, Seok-Kyu
    Oh, Kyeong-Seok
    Shin, Jong Chan
    Lee, Ji Eun
    Lee, Kyung Min
    Cho, Junbeom
    Lee, Won Bo
    Kwak, Sang Kyu
    Lee, Minjae
    Lee, Sang-Young
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (06)
  • [23] On the way to high-conductivity single lithium-ion conductors
    Strauss, E.
    Menkin, S.
    Golodnitsky, D.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (07) : 1879 - 1905
  • [24] Diffusion Pathways and Activation Energies in Crystalline Lithium-Ion Conductors
    Wiedemann, Dennis
    Islam, Mazharul M.
    Bredow, Thomas
    Lerch, Martin
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2017, 231 (7-8): : 1279 - 1302
  • [25] A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors
    Lopez, Jeffrey
    Sun, Yongming
    Mackanic, David G.
    Lee, Minah
    Foudeh, Amir M.
    Song, Min-Sang
    Cui, Yi
    Bao, Zhenan
    ADVANCED MATERIALS, 2018, 30 (43)
  • [26] Enthalpies of formation for perovskite-like lithium-ion conductors
    Reznitskii, LA
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2002, 47 (07) : 1013 - 1014
  • [27] Pseudo single lithium-ion conductors enabled by a metal-organic framework with biomimetic lithium-ion chains for lithium metal batteries
    Shen, Jian-Qiang
    Song, Ying-Li
    He, Chun-Ting
    Zhang, Chen
    Lu, Xing
    Qi, Zhikai
    Lu, Yunfeng
    Zhang, Xian-Ming
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (12) : 2436 - 2442
  • [28] Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries
    Hardin, G. R.
    Zhang, Y.
    Fincher, C. D.
    Pharr, M.
    JOM, 2017, 69 (09) : 1519 - 1523
  • [29] Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries
    G. R. Hardin
    Y. Zhang
    C. D. Fincher
    M. Pharr
    JOM, 2017, 69 : 1519 - 1523
  • [30] Interfacial adhesion energy of lithium-ion battery electrodes
    Wang, Yan
    Pu, Yujie
    Ma, Zengsheng
    Pan, Yong
    Sun, Chang Q.
    EXTREME MECHANICS LETTERS, 2016, 9 : 226 - 236