Heat kernels of non-symmetric jump processes with exponentially decaying jumping kernel

被引:9
|
作者
Kim, Panki [1 ,2 ]
Lee, Jaehun [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Bldg 27,1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Heat kernel estimates; Unimodal Levy process; Non-symmetric operator; Non-symmetric Markov process; DENSITIES;
D O I
10.1016/j.spa.2018.07.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the transition densities for a large class of non-symmetric Markov processes whose jumping kernels decay exponentially or subexponentially. We obtain their upper bounds which also decay at the same rate as their jumping kernels. When the lower bounds of jumping kernels satisfy the weak upper scaling condition at zero, we also establish lower bounds for the transition densities, which are sharp. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2130 / 2173
页数:44
相关论文
共 50 条
  • [1] HEAT KERNEL ESTIMATES FOR SYMMETRIC JUMP PROCESSES WITH ANISOTROPIC JUMPING KERNELS
    Kang, Jaehoon
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 385 - 399
  • [2] Heat Kernels of Non-symmetric Jump Processes: Beyond the Stable Case
    Panki Kim
    Renming Song
    Zoran Vondraček
    [J]. Potential Analysis, 2018, 49 : 37 - 90
  • [3] Heat Kernels of Non-symmetric Jump Processes: Beyond the Stable Case
    Kim, Panki
    Song, Renming
    Vondracek, Zoran
    [J]. POTENTIAL ANALYSIS, 2018, 49 (01) : 37 - 90
  • [4] Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes
    Wang, Jie Ming
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (02) : 229 - 248
  • [5] Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes
    Jie Ming WANG
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (02) : 229 - 248
  • [6] Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes
    Jie Ming Wang
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 229 - 248
  • [7] Heat kernels and analyticity of non-symmetric jump diffusion semigroups
    Chen, Zhen-Qing
    Zhang, Xicheng
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 165 (1-2) : 267 - 312
  • [8] Heat kernels and analyticity of non-symmetric jump diffusion semigroups
    Zhen-Qing Chen
    Xicheng Zhang
    [J]. Probability Theory and Related Fields, 2016, 165 : 267 - 312
  • [9] Estimates of heat kernels of non-symmetric Levy processes
    Grzywny, Tomasz
    Szczypkowski, Karol
    [J]. FORUM MATHEMATICUM, 2021, 33 (05) : 1207 - 1236
  • [10] Homogenization of non-symmetric jump processes
    Huang, Qiao
    Duan, Jinqiao
    Song, Renming
    [J]. ADVANCES IN APPLIED PROBABILITY, 2024, 56 (01) : 1 - 33