Heat Kernel Estimates for Non-symmetric Finite Range Jump Processes

被引:0
|
作者
Wang, Jie Ming [1 ]
机构
[1] Beijing Inst Technol, Dept Math & Stat, Beijing 100081, Peoples R China
关键词
Heat kernel; transition density function; gradient estimate; finite range jump process; truncated fractional Laplacian; martingale problem;
D O I
10.1007/s10114-020-9459-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first establish the sharp two-sided heat kernel estimates and the gradient estimate for the truncated fractional Laplacian under gradient perturbation S-b=(Delta) over bar (alpha/2) + b . where Delta over bar alpha/2 b.del where (Delta) over bar (alpha/2) is the truncated fractional Laplacian, alpha is an element of (1, 2) and b is an element of K-d(alpha-1). In the second part, for a more general finite range jump process, we present some sufficient conditions to allow that the two sided estimates of the heat kernel are comparable to the Poisson type function for large distance divide vertical bar x - y vertical bar divide in short time.
引用
收藏
页码:229 / 248
页数:20
相关论文
共 50 条