Closed form for a sum of Tribonacci Lucas numbers

被引:0
|
作者
Frontczak, Robert
机构
来源
FIBONACCI QUARTERLY | 2020年 / 58卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:379 / 379
页数:1
相关论文
共 50 条
  • [31] A Closed Form for an Infinite Sum
    Plaza, Angel
    Falcon, Sergio
    FIBONACCI QUARTERLY, 2015, 53 (03): : 274 - 274
  • [32] A closed form for a Fibonacci sum
    Edwards, S
    FIBONACCI QUARTERLY, 2005, 43 (03): : 279 - 279
  • [33] TRIBONACCI NUMBERS CLOSE TO THE SUM 2a+3b+5c
    Irmak, Nurettin
    Szalay, Laszlo
    MATHEMATICA SCANDINAVICA, 2016, 118 (01) : 27 - 32
  • [34] Generalizations of Some Formulas of the Reciprocal Sum and Alternating Sum for Generalized Lucas Numbers
    YE Xiao-li LIU Mai-xue (Department of Mathematics
    数学季刊, 2007, (01) : 99 - 103
  • [35] On Fibonacci and Lucas Numbers of the Form cx(2)
    Keskin, Refik
    Yosma, Zafer
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (09)
  • [36] Pell-Lucas Numbers as Sum of Same Power of Consecutive Pell Numbers
    Rihane, Salah Eddine
    Tchammou, Euloge B.
    Togbe, Alain
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
  • [37] A FORMULA FOR TRIBONACCI NUMBERS
    MCCARTY, CP
    FIBONACCI QUARTERLY, 1981, 19 (05): : 391 - 393
  • [38] APPLICATION OF TRIBONACCI NUMBERS
    BEZUSZKA, S
    DANGELO, L
    FIBONACCI QUARTERLY, 1977, 15 (02): : 140 - 144
  • [39] On perfect numbers close to Tribonacci numbers
    Irmak, Nurettin
    Acikel, Abdullah
    1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018), 2018, 1991
  • [40] ON PERFECT POWERS WHICH ARE SUM OR DIFFERENCE OF TWO LUCAS NUMBERS
    Siar, Z.
    Keskin, R.
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 951 - 960