Analysis of a splitting method for incompressible inviscid rotational flow problems

被引:0
|
作者
Tsai, Chiung-Chiou
Yang, Suh-Yuh [1 ]
机构
[1] Natl Cent Univ, Dept Mat, Jhongli 32001, Taiwan
[2] Nanya Inst Technol, Dept Civil Engn, Jhongli 32059, Taiwan
关键词
incompressible inviscid rotational flows; velocity-vorticity-pressure formulation; least squares; finite element methods;
D O I
10.1016/j.cam.2006.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to analyze a splitting method for solving incompressible inviscid rotational flows. The problem is first recast into the velocity-vorticity-pressure formulation by introducing the additional vorticity variable, and then split into three consecutive subsystems. For each subsystem, the L-2 least-squares finite element approach is applied to attain accurate numerical solutions. We show that for each time step this splitting least-squares approach exhibits an optimal rate of convergence in the H-1 norm for velocity and pressure, and a suboptimal rate in the L-2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates. (c) 2006 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:364 / 376
页数:13
相关论文
共 50 条
  • [21] ON THE HODOGRAPH EQUATION IN ADIABATIC INVISCID ROTATIONAL FLOW
    KRZYWOBLOCKI, MZ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (11) : 1074 - 1074
  • [22] A DIMENSION SPLITTING METHOD FOR 3-D INCOMPRESSIBLE THERMAL FLOW
    Chen, Hao
    Li, Kaitai
    Yang, Yiren
    Wang, Shangjin
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (04) : 336 - 365
  • [23] Numerical analysis of the inviscid incompressible flow in two-dimensional radial-flow pump impellers
    Jude, L
    Homentcovschi, D
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1998, 22 (04) : 271 - 279
  • [24] A hybrid numerical method and its application to inviscid compressible flow problems
    Tchuen, Ghislain
    Fogang, Ferdinand
    Burtschell, Yves
    Woafo, Paul
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (02) : 479 - 488
  • [25] Analysis of preconditioned iterative solvers for incompressible flow problems
    Melchior, S. A.
    Legat, V.
    Van Dooren, P.
    Wathen, A. J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 68 (03) : 269 - 286
  • [26] Computing boundary forces due to unsteady, inviscid, incompressible flow
    Breit, S.R.
    Coney, W.C.
    Dickinson, A.L.
    Webb, J.R.
    AIAA journal, 1992, 30 (03): : 592 - 600
  • [27] RESPONSE OF A COMPLIANT SLAB TO INVISCID INCOMPRESSIBLE FLUID-FLOW
    EVRENSEL, CA
    KALNINS, A
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1985, 78 (06): : 2034 - 2041
  • [28] Variational principle for two-dimensional incompressible inviscid flow
    He, Ji-Huan
    PHYSICS LETTERS A, 2007, 371 (1-2) : 39 - 40
  • [29] An optimal control formulation for inviscid incompressible ideal fluid flow
    Bloch, AM
    Crouch, PE
    Holm, DD
    Marsden, JE
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 1273 - 1278
  • [30] ON THE LINEAR-STABILITY OF INVISCID INCOMPRESSIBLE PLANE PARALLEL FLOW
    BARSTON, EM
    JOURNAL OF FLUID MECHANICS, 1991, 233 : 157 - 163