The spectral analysis of the unitary matrix of a 2-tessellable staggered quantum walk on a graph

被引:1
|
作者
Konno, Norio [1 ]
Ide, Yusuke [2 ]
Sato, Iwao [3 ]
机构
[1] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
[2] Kanagawa Univ, Fac Engn, Dept Informat Syst Creat, Yokohama, Kanagawa 2218686, Japan
[3] Oyama Natl Coll Technol, Oyama, Tochigi 3230806, Japan
基金
日本学术振兴会;
关键词
Quantum walk; Szegedy walk; Staggered quantum walk;
D O I
10.1016/j.laa.2018.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the staggered quantum walk (SQW) on a graph is discussed as a generalization of coined quantum walks on graphs and Szegedy walks. We present a formula for the characteristic polynomial of the time evolution matrix of a 2-tessellable SQW on a graph, and so directly give its spectra. Furthermore, we discuss about the property of the eigenvalues of the discriminant for the time evolution matrix of a 2-tessellable SQW on a graph, and present eigenvectors for some of its eigenvalues. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:207 / 225
页数:19
相关论文
共 50 条
  • [21] Spectral analysis for a multi-dimensional split-step quantum walk with a defect
    Toru Fuda
    Akihiro Narimatsu
    Kei Saito
    Akito Suzuki
    [J]. Quantum Studies: Mathematics and Foundations, 2022, 9 : 93 - 112
  • [22] 2D quantum gravity, matrix models and graph combinatorics
    Di Francesco, P
    [J]. APPLICATIONS OF RANDOM MATRICES IN PHYSICS, 2006, 221 : 33 - 88
  • [23] Spectral Analysis of the Dirac Operator on Y-type Chain Quantum Graph
    Blinova, Irina
    Finyutina, Angelika
    Popov, Igor
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [24] SPECTRAL ANALYSIS OF A MATRIX-VALUED QUANTUM-DIFFERENCE OPERATOR
    Aygar, Yelda
    Bohner, Martin J.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (1-2): : 29 - 37
  • [25] SPECTRAL ANALYSIS OF MATRIX POLYNOMIALS .2. RESOLVENT FORM AND SPECTRAL DIVISORS
    GOHBERG, I
    LANCASTER, P
    RODMAN, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 21 (01) : 65 - 88
  • [26] A HOPF STAR-ALGEBRA OF POLYNOMIALS ON THE QUANTUM SL(2, R) FOR A UNITARY R-MATRIX
    ZAKRZEWSKI, S
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (04) : 287 - 289
  • [27] A matrix-theoretic spectral analysis of incompressible Navier–Stokes staggered DG approximations and a related spectrally based preconditioning approach
    M. Mazza
    M. Semplice
    S. Serra-Capizzano
    E. Travaglia
    [J]. Numerische Mathematik, 2021, 149 : 933 - 971
  • [28] Analysis of Spectral Space Properties of Directed Graphs using Matrix Perturbation Theory with Application in Graph Partition
    Li, Yuemeng
    Wu, Xintao
    Lu, Aidong
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 847 - 852
  • [29] Low-Order Spectral Analysis of the Kirchhoff Matrix for a Probabilistic Graph With a Prescribed Expected Degree Sequence
    Preciado, Victor M.
    Verghese, George C.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (06) : 1231 - 1240
  • [30] Spectral analysis and the Haar functional on the quantum SU (2) group
    Koelink, HT
    Verding, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (02) : 399 - 415