The spectral analysis of the unitary matrix of a 2-tessellable staggered quantum walk on a graph

被引:1
|
作者
Konno, Norio [1 ]
Ide, Yusuke [2 ]
Sato, Iwao [3 ]
机构
[1] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
[2] Kanagawa Univ, Fac Engn, Dept Informat Syst Creat, Yokohama, Kanagawa 2218686, Japan
[3] Oyama Natl Coll Technol, Oyama, Tochigi 3230806, Japan
基金
日本学术振兴会;
关键词
Quantum walk; Szegedy walk; Staggered quantum walk;
D O I
10.1016/j.laa.2018.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the staggered quantum walk (SQW) on a graph is discussed as a generalization of coined quantum walks on graphs and Szegedy walks. We present a formula for the characteristic polynomial of the time evolution matrix of a 2-tessellable SQW on a graph, and so directly give its spectra. Furthermore, we discuss about the property of the eigenvalues of the discriminant for the time evolution matrix of a 2-tessellable SQW on a graph, and present eigenvectors for some of its eigenvalues. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:207 / 225
页数:19
相关论文
共 50 条
  • [1] The spectra of the unitary matrix of an N-tessellable staggered quantum walk on a graph
    Konno, Norio
    Ide, Yusuke
    Sato, Iwao
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 611 : 187 - 212
  • [2] Eigenbasis of the evolution operator of 2-tessellable quantum walks
    Higuchi, Yusuke
    Portugal, Renato
    Sato, Iwao
    Segawa, Etsuo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 583 : 257 - 281
  • [3] Spectral mapping theorem of an abstract non-unitary quantum walk
    Asahara, Keisuke
    Funakawa, Daiju
    Segawa, Etsuo
    Suzuki, Akito
    Teranishi, Noriaki
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 1 - 24
  • [4] A LIMIT DISTRIBUTION FOR A QUANTUM WALK DRIVEN BY A FIVE-DIAGONAL UNITARY MATRIX
    Machida, Takuya
    [J]. QUANTUM INFORMATION & COMPUTATION, 2021, 21 (1-2) : 19 - 36
  • [5] A limit distribution for a quantum walk driven by a five-diagonal unitary matrix
    Machida, Takuya
    [J]. Quantum Information and Computation, 2021, 21 (1-2): : 19 - 36
  • [6] Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits
    Bertini, Bruno
    Kos, Pavel
    Prosen, Tomaz
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 387 (01) : 597 - 620
  • [7] Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits
    Bruno Bertini
    Pavel Kos
    Tomaž Prosen
    [J]. Communications in Mathematical Physics, 2021, 387 : 597 - 620
  • [8] A zeta function related to the transition matrix of the discrete-time quantum walk on a graph
    Konno, Norio
    Sato, Iwao
    Segawa, Etsuo
    [J]. DISCRETE MATHEMATICS, 2021, 344 (07)
  • [9] Algebraic spectral analysis of the locating degree matrix of a graph
    Zeyada, N.
    Saleh, A.
    Alzahrani, Khalil A.
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (03): : 687 - 698
  • [10] Implementation of a discrete-time quantum walk with a circulant matrix on a graph by optical polarizing elements
    Mizutani, Yusuke
    Horikiri, Tomoyuki
    Matsuoka, Leo
    Higuchi, Yusuke
    Segawa, Etsuo
    [J]. PHYSICAL REVIEW A, 2022, 106 (02)