COMPARISON OF FATIGUE CRITERIA UNDER PROPORTIONAL AND NON-PROPORTIONAL MULTIAXIAL LOADING

被引:12
|
作者
Poisson, J. L. [1 ]
Meo, S. [2 ]
Lacroix, F. [2 ]
Berton, G. [2 ]
Hosseini, M. [2 ]
Ranganathan, N. [2 ]
机构
[1] Tun Abdul Razak Res Ctr, Brickendonbury SG13 8NL, Herts, England
[2] Univ Francois Rabelais Tours, Lab Mecan & Rheol, 7 Ave Marcel Dassault, F-37200 Tours, France
来源
RUBBER CHEMISTRY AND TECHNOLOGY | 2018年 / 91卷 / 02期
关键词
CONTINUUM DAMAGE MODEL; STRAIN-INDUCED CRYSTALLIZATION; RUBBER-LIKE MATERIALS; LIFE PREDICTION; THERMAL MEASUREMENTS; VARIABLE AMPLITUDE; CRACK NUCLEATION; BEHAVIOR; ENERGY; MECHANICS;
D O I
10.5254/rct.18.82696
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Owing to their interesting mechanical behavior and their diversity, rubberlike materials are more and more used in the industry. Previous works (Poisson et al.) presented an important experimental investigation on the multiaxial fatigue of polychloroprene rubber, with both proportional and non-proportional combinations of tension and torsion loads (with a large range of loads and three different phase angles: 0 degrees; 90 degrees, 180 degrees). A fatigue criterion, based on the dissipated energy density (DED) was introduced. Comparing this parameter to the most important criteria available on literature-which are the strain energy density (SED), the cracking energy density (CED), and the Eshelby tensor-in their accuracy allows one to predict fatigue life of rubberlike material. All the predictors are computed with an analytical viscoelastic model based on the kinematics of a combined tension and torsion loading applied on a cylinder. This cylinder represents the central part of the axisymetric dumbbell specimen, and the model was identified with a polychloroprene rubber. It is finally shown that the DED and CED reach more conclusive results, provided the structure, the material, and the loads investigated.
引用
下载
收藏
页码:320 / 338
页数:19
相关论文
共 50 条
  • [41] Evaluation of low cycle fatigue under non-proportional loading
    Chen, X
    Gao, Q
    Abel, A
    Wu, S
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1996, 19 (10) : 1161 - 1168
  • [42] Low-cycle fatigue under non-proportional loading
    Chen, X
    Gao, Q
    Sun, XF
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 1996, 19 (07) : 839 - 854
  • [43] Low-cycle fatigue under non-proportional loading
    Tianjin Univ, Tianjin, China
    Fatigue Fract Eng Mater Struct, 7 (839-854):
  • [44] Multiaxial low-cycle fatigue life evaluation under different non-proportional loading paths
    Qu, W. L.
    Zhao, E. N.
    Zhou, Q.
    Pi, Y. -L.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2018, 41 (05) : 1064 - 1076
  • [45] Notch stress stress to assess multiaxial fatigue of complex welded structures under non-proportional loading
    Shen, Wei
    Xu, Linzhi
    He, Feng
    Song, Lifei
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 102 : 151 - 161
  • [46] Evaluation of Multiaxial Creep-fatigue Strength for High Chromium Steel under Non-proportional Loading
    Kasamuta, Yuuki
    Ogawa, Fumio
    Itoh, Takamoto
    Tanigawa, Hiroyasu
    ICMFF12 - 12TH INTERNATIONAL CONFERENCE ON MULTIAXIAL FATIGUE AND FRACTURE, 2019, 300
  • [47] An empirical non-proportional cyclic plasticity approach under multiaxial low-cycle fatigue loading
    Wu, Hao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 142 : 66 - 73
  • [48] Concept of equivalent overloading for the estimation of damage under multiaxial non-proportional loading
    Taheri, S
    Doquet, V
    LIFETIME MANAGEMENT AND EVALUATION OF PLANT, STRUCTURES AND COMPONENTS, 1998, : 59 - 66
  • [49] A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection
    Zhong, Bo
    Wang, Yanrong
    Wei, Dasheng
    Wang, Jialiang
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 102 : 241 - 251
  • [50] Experimental results and fatigue life evaluation of magnesium laserbeam-welded joints under proportional and non-proportional multiaxial fatigue loading with variable amplitudes
    Bolchoun, A.
    Sonsino, C. M.
    Kaufmann, H.
    Melz, T.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2017, 48 (02) : 88 - 100