Computational Approaches for uncertainty Quantification of Naval Engineering Problems

被引:0
|
作者
Broglia, Riccardo [1 ]
Diez, Matteo [1 ]
Tamellini, Lorenzo [2 ]
机构
[1] CNR INM, Rome, Italy
[2] CNR IMATI, Pavia, Italy
来源
ERCIM NEWS | 2020年 / 123期
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The design of efficient seagoing vessels is key to a sustainable blue growth. Computer simulations are routinely used to explore different designs, but a reliable analysis must take into account the unavoidable uncertainties that are intrinsic to the maritime environment. We investigated two ways of performing this analysis in an effective, CPU-time parsimonious way.
引用
收藏
页码:24 / 25
页数:2
相关论文
共 50 条
  • [1] Computational approaches to critical engineering problems
    Horvath, Imre
    Duhovnik, Joze
    [J]. STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2007, 53 (7-8): : 424 - 428
  • [2] Polynomial chaos expansion for uncertainty quantification of dam engineering problems
    Hariri-Ardebili, Mohammad Amin
    Sudret, Bruno
    [J]. ENGINEERING STRUCTURES, 2020, 203
  • [3] COMPUTATIONAL APPROACHES TO SOME INVERSE PROBLEMS FROM ENGINEERING PRACTICE
    Vala, Jiri
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 17, 2015, : 215 - 230
  • [4] Multifidelity approaches for uncertainty quantification
    Biehler J.
    Mäck M.
    Nitzler J.
    Hanss M.
    Koutsourelakis P.-S.
    Wall W.A.
    [J]. GAMM Mitteilungen, 2019, 42 (02)
  • [5] CUQIpy: I. Computational uncertainty quantification for inverse problems in Python']Python
    Riis, Nicolai A. B.
    Alghamdi, Amal M. A.
    Uribe, Felipe
    Christensen, Silja L.
    Afkham, Babak M.
    Hansen, Per Christian
    Jorgensen, Jakob S.
    [J]. INVERSE PROBLEMS, 2024, 40 (04)
  • [6] Uncertainty quantification for engineering design
    Ghanem, Roger
    Du, Xiaoping
    [J]. AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2017, 31 (02): : 119 - 119
  • [7] Uncertainty quantification for engineering design
    Ghanem, Roger
    Du, Xiaoping
    [J]. AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2017, 31 (03): : 222 - 222
  • [8] Engaging soft computing in material and modeling uncertainty quantification of dam engineering problems
    Mohammad Amin Hariri-Ardebili
    Fernando Salazar
    [J]. Soft Computing, 2020, 24 : 11583 - 11604
  • [9] Engaging soft computing in material and modeling uncertainty quantification of dam engineering problems
    Hariri-Ardebili, Mohammad Amin
    Salazar, Fernando
    [J]. SOFT COMPUTING, 2020, 24 (15) : 11583 - 11604
  • [10] On uncertainty quantification in vibroacoustic problems
    Sepahvand, K.
    Marburg, S.
    [J]. EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 3259 - 3263