Polynomial chaos expansion for uncertainty quantification of dam engineering problems

被引:67
|
作者
Hariri-Ardebili, Mohammad Amin [1 ]
Sudret, Bruno [2 ]
机构
[1] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA
[2] Swiss Fed Inst Technol, Chair Risk Safety & Uncertainty Quantificat, Zurich, Switzerland
关键词
Dams; Polynomial chaos expansion; Probabilistic; Seismic; Epistemic uncertainty; Uncertainty quantification; STOCHASTIC FINITE-ELEMENT; RELIABILITY-ANALYSIS; GRAVITY DAMS; SYSTEMS; RISK;
D O I
10.1016/j.engstruct.2019.109631
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Uncertainty quantification is an inseparable part of risk assessment in dam engineering. Many probabilistic methods have been developed to deal with random nature of the input parameters or the system itself. In this paper, the polynomial chaos expansion (PCE) is adopted as an effective technique for uncertainty quantification of variety of dam engineering problems (specially with small data sets). Four different case studies are investigated with increasing complexities in which the static and dynamic responses are sought to predict. The limit state functions in the form of implicit and explicit are studied. Uncertainties are propagated in material properties and modeling. Depending on the problem at hand, a validation set from several thousands to couple of hundreds are used. Overall, it is found that the PCE is an effective technique to deal with uncertainty quantification in concrete dams.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] A Fast Polynomial Chaos Expansion for Uncertainty Quantification in Stochastic Electromagnetic Problems
    Tomy, Gladwin Jos Kurupasseril
    Vinoy, Kalarickaparambil Joseph
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (10): : 2120 - 2124
  • [2] Uncertainty quantification by the nonintrusive polynomial chaos expansion with an adjustment strategy
    Shimoyama, Koji
    Inoue, Akihiro
    AIAA Journal, 2016, 54 (10): : 3107 - 3116
  • [3] Uncertainty Quantification by the Nonintrusive Polynomial Chaos Expansion with an Adjustment Strategy
    Shimoyama, Koji
    Inoue, Akihiro
    AIAA JOURNAL, 2016, 54 (10) : 3107 - 3116
  • [4] Uncertainty Quantification in Molecular Signals Using Polynomial Chaos Expansion
    Abbaszadeh M.
    Moutsinas G.
    Thomas P.J.
    Guo W.
    Guo, Weisi (weisi.guo@warwick.ac.uk), 2018, Institute of Electrical and Electronics Engineers Inc., United States (04): : 248 - 256
  • [5] UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION
    Sepahvand, K.
    Marburg, S.
    Hardtke, H. -J.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (02) : 305 - 353
  • [6] Efficient polynomial chaos expansion for uncertainty quantification in power systems
    Metivier, David
    Vuffray, Marc
    Misra, Sidhant
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
  • [7] Generalized Polynomial Chaos Expansion Approach for Uncertainty Quantification in Small Satellite Orbital Debris Problems
    Bhusal, Rajnish
    Subbarao, Kamesh
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2020, 67 (01): : 225 - 253
  • [8] Generalized Polynomial Chaos Expansion Approach for Uncertainty Quantification in Small Satellite Orbital Debris Problems
    Rajnish Bhusal
    Kamesh Subbarao
    The Journal of the Astronautical Sciences, 2020, 67 : 225 - 253
  • [9] Bi-fidelity reduced polynomial chaos expansion for uncertainty quantification
    Felix Newberry
    Jerrad Hampton
    Kenneth Jansen
    Alireza Doostan
    Computational Mechanics, 2022, 69 : 405 - 424
  • [10] Modified Polynomial Chaos Expansion for Efficient Uncertainty Quantification in Biological Systems
    Son, Jeongeun
    Du, Dongping
    Du, Yuncheng
    APPLIED MECHANICS, 2020, 1 (03): : 153 - 173