Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution

被引:640
|
作者
Tsai, Charlie [1 ,2 ]
Li, Hong [3 ,4 ]
Park, Sangwook [3 ]
Park, Joonsuk [5 ]
Han, Hyun Soo [3 ]
Norskov, Jens K. [1 ,2 ]
Zheng, Xiaolin [3 ]
Abild-Pedersen, Frank [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, 443 Via Ortega, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94305 USA
[3] Stanford Univ, Dept Mech Engn, 440 Escondido Mall, Stanford, CA 94305 USA
[4] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[5] Stanford Univ, Dept Mat Sci & Engn, 440 Escondido Mall, Stanford, CA 94305 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
ACTIVE EDGE SITES; OXYGEN REDUCTION; MONOLAYER MOS2; CO2; REDUCTION; MOLYBDENUM; NANOSHEETS; CATALYSTS; ELECTROCATALYSIS; LAYERS;
D O I
10.1038/ncomms15113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, sulfur (S)-vacancies created on the basal plane of 2H-molybdenum disulfide (MoS2) using argon plasma exposure exhibited higher intrinsic activity for the electrochemical hydrogen evolution reaction than the edge sites and metallic 1T-phase of MoS2 catalysts. However, a more industrially viable alternative to the argon plasma desulfurization process is needed. In this work, we introduce a scalable route towards generating S-vacancies on the MoS2 basal plane using electrochemical desulfurization. Even though sulfur atoms on the basal plane are known to be stable and inert, we find that they can be electrochemically reduced under accessible applied potentials. This can be done on various 2H-MoS2 nanostructures. By changing the applied desulfurization potential, the extent of desulfurization and the resulting activity can be varied. The resulting active sites are stable under extended desulfurization durations and show consistent HER activity.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] Engineering Isolated S Vacancies over 2D MoS2 Basal Planes for Catalytic Hydrogen Evolution
    Jiang, Ling
    Zhou, Qian
    Li, Jing-Jing
    Xia, Yu-Xin
    Li, Huan-Xin
    Li, Yong-Jun
    ACS APPLIED NANO MATERIALS, 2022, 5 (03) : 3521 - 3530
  • [23] Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity
    Bentley, Cameron L.
    Kang, Minkyung
    Maddar, Faduma M.
    Li, Fengwang
    Walker, Marc
    Zhang, Jie
    Unwin, Patrick R.
    CHEMICAL SCIENCE, 2017, 8 (09) : 6583 - 6593
  • [24] High hydrogen evolution reaction performance of MoS2 nanosheets with sulfur vacancies synthesized from natural molybdenite
    Zhang, Weichao
    Wang, Ke
    Tian, Ye
    Liao, Libing
    Liu, Hao
    JOURNAL OF MATERIALS SCIENCE, 2025, 60 (07) : 3321 - 3332
  • [25] Sulfur vacancies and group VB metal atoms doping to synergistically optimize hydrogen evolution of MoS2 nanosheets
    Song, Yanli
    Zhou, Xue
    Wei, Kuo
    Hu, Hao
    Wu, Miao
    Li, Mengdi
    Xie, Ruijia
    Wang, Yuanzhe
    Gao, Faming
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 690
  • [26] Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2
    Sha Dong
    Zhiguo Wang
    Electrocatalysis, 2018, 9 : 744 - 751
  • [27] Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping
    Wenwu Shi
    Shiyun Wu
    Zhiguo Wang
    Journal of Nanoparticle Research, 2018, 20
  • [28] Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping
    Shi, Wenwu
    Wu, Shiyun
    Wang, Zhiguo
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (10)
  • [29] Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2
    Dong, Sha
    Wang, Zhiguo
    ELECTROCATALYSIS, 2018, 9 (06) : 744 - 751
  • [30] Single-atom metal tuned sulfur vacancy for efficient H2 activation and hydrogen evolution reaction on MoS2 basal plane
    Su, Hai-Yan
    Ma, Xiufang
    Sun, Keju
    APPLIED SURFACE SCIENCE, 2022, 597