A framework for automating the configuration of OpenCL

被引:1
|
作者
Rosa Gomes, Raphael de Souza [1 ]
Figueiredo, Josiel Maimone [1 ]
Martins, Claudia Aparecida [1 ]
de Oliveira, Allan Goncalves [1 ]
Nogueira, Jose de Souza [2 ]
机构
[1] Univ Fed Mato Grosso, Comp Inst, Mato Grosso, Brazil
[2] Univ Fed Mato Grosso, Inst Phys, Mato Grosso, Brazil
关键词
GPU; OpenCL; Parallelism; Environmental data; Fractal dimension; SEBS; Spatiotemporal series; BALANCE SYSTEM SEBS;
D O I
10.1016/j.envsoft.2013.11.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Environmental research and scientific simulations use information acquired by sensors to validate the modeling and representation of environmental behaviors. The computational processing cost of this context tends to be extremely high due to the amount of information and the model's calculation complexities which demand the use of computational parallel solutions. This paper presents JSeriesCL, a framework for parallel processing of spatiotemporal series using graphics processors (GPGPU), more specifically OpenCL. GPU is cheaper than other solutions for parallel processing, such as clusters or grid, and JSeriesCL changes the way that CPU are used because it automates the configuration and management aspects of such devices. Fractal dimension and SEBS were used to validate the application of JSeriesCL over environmental data. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [31] A Novel Approach to Automating Operating System Configuration Management
    Swiecicki, Blazej
    [J]. INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2015, PT II, 2016, 430 : 131 - 142
  • [32] Toward automating EA configuration: The parent selection stage
    Smorodkina, Ekaterina
    Tauritz, Daniel
    [J]. 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 63 - 70
  • [33] OpenCL-Darknet: implementation and optimization of OpenCL-based deep learning object detection framework
    Yongbon Koo
    Sunghoon Kim
    Young-guk Ha
    [J]. World Wide Web, 2021, 24 : 1299 - 1319
  • [34] OpenCL-Darknet: implementation and optimization of OpenCL-based deep learning object detection framework
    Koo, Yongbon
    Kim, Sunghoon
    Ha, Young-guk
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2021, 24 (04): : 1299 - 1319
  • [35] An OpenCL Framework for Distributed Apps on a Multidimensional Network of FPGAs
    Lawande, Abhijeet
    George, Alan D.
    Lam, Herman
    [J]. PROCEEDINGS OF 2016 6TH WORKSHOP ON IRREGULAR APPLICATIONS: ARCHITECTURE AND ALGORITHMS (IA3), 2016, : 42 - 49
  • [36] A framework for automating deployment and evaluation of blockchain networks
    Tran, Nguyen Khoi
    Babar, M. Ali
    Walters, Andrew
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 206
  • [37] OmniVoke: A Framework for Automating the Invocation of Web APIs
    Li, Ning
    Pedrinaci, Carlos
    Maleshkova, Maria
    Kopecky, Jacek
    Domingue, John
    [J]. FIFTH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2011), 2011, : 39 - 46
  • [38] Framework for automating cost estimates in assembly processes
    Calton, Terri L.
    Peters, Ralph R.
    [J]. Proceedings of the IEEE International Symposium on Assembly and Task Planning, 1999, : 100 - 105
  • [39] A statistical performance analyzer framework for OpenCL kernels on Nvidia GPUs
    Karami, Ali
    Khunjush, Farshad
    Mirsoleimani, Seyyed Ali
    [J]. JOURNAL OF SUPERCOMPUTING, 2015, 71 (08): : 2900 - 2921
  • [40] A statistical performance analyzer framework for OpenCL kernels on Nvidia GPUs
    Ali Karami
    Farshad Khunjush
    Seyyed Ali Mirsoleimani
    [J]. The Journal of Supercomputing, 2015, 71 : 2900 - 2921