Forest extension of error correcting output codes and boosted landmarks

被引:0
|
作者
Escalera, Sergio [1 ]
Pujol, Oriol [2 ]
Radeva, Petia [1 ]
机构
[1] UAB, Dept Comp Sci, CVC, Campus UAB, Bellaterra 08193, Spain
[2] Dept Math Anal, E-08007 Barcelona, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce a robust novel approach for detecting objects category in cluttered scenes by generating boosted contextual descriptors of landmarks. In particular, our method avoids the need of image segmentation, being at the same time invariant to scale, global illumination, occlusions. and to small affine transformations. Once detected the object category, we address the problem of multiclass recognition where a battery of classifiers is trained able to capture the shared properties between the object descriptors across classes. A natural way to address the multiclass problem is using the Error Correcting Output Codes technique. We extend the ECOC technique proposing a methodology to construct a forest of decision trees that are included in the ECOC framework. We present very promising results on standard databases: UCI database and Caltech database as well as in a real image problem.
引用
收藏
页码:104 / +
页数:2
相关论文
共 50 条
  • [1] Optimal Extension of Error Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    [J]. ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2006, 146 : 28 - +
  • [2] Sensitive error correcting output codes
    Langford, J
    Beygelzimer, A
    [J]. LEARNING THEORY, PROCEEDINGS, 2005, 3559 : 158 - 172
  • [3] Online error correcting output codes
    Escalera, Sergio
    Masip, David
    Puertas, Eloi
    Radeva, Petia
    Pujol, Oriol
    [J]. PATTERN RECOGNITION LETTERS, 2011, 32 (03) : 458 - 467
  • [4] Deep Error Correcting Output Codes
    Zhong, Guoqiang
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Cheriet, Mohamed
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), 2018, : 250 - 255
  • [5] A study on Error Correcting Output Codes
    Pimenta, Edgar
    Gama, Joao
    [J]. 2005 PORTUGUESE CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 218 - 223
  • [6] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [7] A subspace approach to error correcting output codes
    Bagheri, Mohammad Ali
    Montazer, Gholam Ali
    Kabir, Ehsanollah
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (02) : 176 - 184
  • [8] Decoding of ternary error correcting output codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 753 - 763
  • [9] Deep Error-Correcting Output Codes
    Wang, Li-Na
    Wei, Hongxu
    Zheng, Yuchen
    Dong, Junyu
    Zhong, Guoqiang
    [J]. ALGORITHMS, 2023, 16 (12)
  • [10] Some comments on Error Correcting Output Codes
    Seok, Kyung Ha
    Cho, Daehycon
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 383 - 392