Decoding of ternary error correcting output codes

被引:0
|
作者
Escalera, Sergio [1 ]
Pujol, Oriol
Radeva, Petia
机构
[1] Univ Autonoma Barcelona, Dept Comp Sci, Comp Vis Ctr, Bellaterra, Spain
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Error correcting output codes (ECOC) represent a successful extension of binary classifiers to address the multiclass problem. Lately, the ECOC framework was extended from the binary to the ternary case to allow classes to be ignored by a certain classifier, allowing in this way to increase the number of possible dichotomies to be selected. Nevertheless, the effect of the zero symbol by which dichotomies exclude certain classes from consideration has not been previously enough considered in the definition of the decoding strategies. In this paper, we show that by a special treatment procedure of zeros, and adjusting the weights at the rest of coded positions, the accuracy of the system can be increased. Besides, we extend the main state-of-art decoding strategies from the binary to the ternary case, and we propose two novel approaches: Laplacian and Pessimistic Beta Density Probability approaches. Tests on UCT database repository (with different sparse matrices containing different percentages of zero symbol) show that the ternary decoding techniques proposed outperform the standard decoding strategies.
引用
收藏
页码:753 / 763
页数:11
相关论文
共 50 条
  • [1] On the Decoding Process in Ternary Error-Correcting Output Codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (01) : 120 - 134
  • [2] Efficient Decoding of Ternary Error-Correcting Output Codes for Multiclass Classification
    Park, Sang-Hyeun
    Fuernkranz, Johannes
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 189 - 204
  • [3] Decoding design based on posterior probabilities in Ternary Error-Correcting Output Codes
    Zhou, Jin Deng
    Wang, Xiao Dan
    Zhou, Hong Jian
    Zhang, Jie Ming
    Jia, Ning
    [J]. PATTERN RECOGNITION, 2012, 45 (04) : 1802 - 1818
  • [4] OPTIMIZED WEIGHTED DECODING FOR ERROR-CORRECTING OUTPUT CODES
    Zhang, Xiao-Lei
    Wu, Ji
    Chen, Zhi-Peng
    Lv, Ping
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2101 - 2104
  • [5] Separability of ternary codes for sparse designs of error-correcting output codes
    Escalera, Sergio
    Pujol, Oriol
    Radeva, Petia
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (03) : 285 - 297
  • [6] Fractional Programming Weighted Decoding for Error-Correcting Output Codes
    Ismailoglu, Firat
    Sprinkhuizen-Kuyper, I. G.
    Smirnov, Evgueni
    Escalera, Sergio
    Peeters, Ralf
    [J]. MULTIPLE CLASSIFIER SYSTEMS (MCS 2015), 2015, 9132 : 38 - 50
  • [7] Error Correcting Output Codes Using Genetic Algorithm-Based Decoding
    Hatami, Nima
    Seyedtabaii, Saeed
    [J]. NCM 2008 : 4TH INTERNATIONAL CONFERENCE ON NETWORKED COMPUTING AND ADVANCED INFORMATION MANAGEMENT, VOL 1, PROCEEDINGS, 2008, : 391 - 396
  • [8] ON TERNARY ERROR CORRECTING LINE CODES
    FERREIRA, HC
    HOPE, JF
    NEL, AL
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1989, 37 (05) : 510 - 515
  • [9] The Research of Ternary Error-Correcting Output Codes Based on Genetic Programming
    Liang, YiFan
    Liu, Chang
    Wang, HanRui
    Liu, KunHong
    [J]. 2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 831 - 837
  • [10] Sensitive error correcting output codes
    Langford, J
    Beygelzimer, A
    [J]. LEARNING THEORY, PROCEEDINGS, 2005, 3559 : 158 - 172