Regional null controllability for degenerate heat equations

被引:7
|
作者
Cannarsa, P
Martinez, P
Vancostenoble, J
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Toulouse 3, UMR 5640, Lab MIP, F-31062 Toulouse 4, France
来源
COMPTES RENDUS MECANIQUE | 2002年 / 330卷 / 06期
关键词
control; null controllability; parabolic equations;
D O I
10.1016/S1631-0721(02)01475-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We are interested in a null controllability problem for a class of strongly degenerate heat equations. First for all T > 0, we prove a regional null controllability result at time T at least in the region where the equation is not degenerate. The proof is based on an adequate observability inequality for the homogeneous adjoint problem. This inequality is obtained by application of Carleman estimates combined with the introduction of cut-off functions. Then we improve this result: for all T' > T, we obtain a result of persistent regional null controllability during the time interval [T, T']. Finally we give similar results for the (non degenerate) heat equation in unbounded domain.
引用
收藏
页码:397 / 401
页数:5
相关论文
共 50 条
  • [21] NULL CONTROLLABILITY FOR DEGENERATE PARABOLIC EQUATIONS WITH A NONLOCAL SPACE TERM
    Allal, Brahim
    Fragnelli, Genni
    Salhi, Jawad
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022,
  • [22] Exact null controllability of degenerate evolution equations with scalar control
    Fedorov, V. E.
    Shklyar, B.
    SBORNIK MATHEMATICS, 2012, 203 (12) : 1817 - 1836
  • [23] Null controllability of nonlinear convective heat equations
    Anita, S
    Barbu, V
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 : 157 - 173
  • [24] Null controllability of nonlinear convective heat equations
    Aniţa, S.
    Barbu, V.
    ESAIM Control, Optimisation and Calculus of Variations, 2000, (05) : 157 - 173
  • [25] NULL BOUNDARY CONTROLLABILITY FOR SEMILINEAR HEAT-EQUATIONS
    GUO, YJL
    LITTMAN, W
    APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 32 (03): : 281 - 316
  • [26] Remarks on null controllability for heat equations in thin domains
    de Menezes, Silvano B.
    Limaco, Juan
    Medeiros, Luis A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (01): : 47 - 65
  • [27] Null controllability with constraints on the state for nonlinear heat equations
    Mophou, Gisele M.
    FORUM MATHEMATICUM, 2011, 23 (02) : 285 - 319
  • [28] Regional controllability of semilinear degenerate parabolic equations in bounded domains
    Cannarsa, P.
    Fragnelli, G.
    Vancostenoble, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) : 804 - 818
  • [29] Null Controllability of a Degenerate Schrodinger Equation
    Chrifi, Abderrazak
    Echarroudi, Younes
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (01)
  • [30] Stackelberg–Nash null controllability for some linear and semilinear degenerate parabolic equations
    F. D. Araruna
    B. S. V. Araújo
    E. Fernández-Cara
    Mathematics of Control, Signals, and Systems, 2018, 30