Accurate two-dimensional classification of stellar spectra with artificial neural networks

被引:27
|
作者
Weaver, WB
TorresDodgen, AV
机构
[1] Monterey Institute for Research in Astronomy, Marina, CA 93933
来源
ASTROPHYSICAL JOURNAL | 1997年 / 487卷 / 02期
关键词
infrared; stars; methods; statistical; fundamental parameters; techniques; spectroscopic;
D O I
10.1086/304651
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a solution to the long-standing problem of automatically classifying stellar spectra of all temperature and luminosity classes with the accuracy shown by expert human classifiers. We use the 15 Angstrom resolution near-infrared spectral classification system described by Torres-Dodgen & Weaver in 1993. Using the spectrum with no manual intervention except wavelength registration, artificial neural networks (ANNs) can classify these spectra with Morgan-Keenan types with an accuracy comparable to that obtained by human experts using 2 Angstrom resolution blue spectra, which is about 0.5 types (subclasses) in temperature and about 0.25 classes in luminosity. Accurate temperature classification requires a hierarchy of ANNs, while luminosity classification is most successful with a single ANN. We propose an architecture for a fully automatic classification system.
引用
收藏
页码:847 / 857
页数:11
相关论文
共 50 条
  • [41] Spiking neural networks based on two-dimensional materials
    Roldan, Juan B.
    Maldonado, David
    Aguilera-Pedregosa, Cristina
    Moreno, Enrique
    Aguirre, Fernando
    Romero-Zaliz, Rocio
    Garcia-Vico, Angel M.
    Shen, Yaqing
    Lanza, Mario
    NPJ 2D MATERIALS AND APPLICATIONS, 2022, 6 (01)
  • [42] Automated classification of ELODIE stellar spectral library using probabilistic artificial neural networks
    Mahdi, Bazarghan
    BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2008, 36 (01): : 1 - 54
  • [43] Two-dimensional defocusing correction using artificial neural nets
    de Solorzano, GO
    Gonzalez, V
    Santos, A
    del Pozo, F
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING V, PROCEEDINGS OF, 1998, 3261 : 127 - 138
  • [44] An artificial neural network chip based on two-dimensional semiconductor
    Ma, Shunli
    Wu, Tianxiang
    Chen, Xinyu
    Wang, Yin
    Tang, Hongwei
    Yao, Yuting
    Wang, Yan
    Zhu, Ziyang
    Deng, Jianan
    Wan, Jing
    Lu, Ye
    Sun, Zhengzong
    Xu, Zihan
    Riaud, Antoine
    Wu, Chenjian
    Zhang, David Wei
    Chai, Yang
    Zhou, Peng
    Ren, Junyan
    Bao, Wenzhong
    SCIENCE BULLETIN, 2022, 67 (03) : 270 - 277
  • [45] An artificial neural network chip based on two-dimensional semiconductor
    Shunli Ma
    Tianxiang Wu
    Xinyu Chen
    Yin Wang
    Hongwei Tang
    Yuting Yao
    Yan Wang
    Ziyang Zhu
    Jianan Deng
    Jing Wan
    Ye Lu
    Zhengzong Sun
    Zihan Xu
    Antoine Riaud
    Chenjian Wu
    David Wei Zhang
    Yang Chai
    Peng Zhou
    Junyan Ren
    Wenzhong Bao
    Science Bulletin, 2022, 67 (03) : 270 - 277
  • [46] Application of artificial neural networks to the simulation of a two dimensional flow
    Dibike, Yonas B.
    Abbott, Michael B.
    Journal of Hydraulic Research/De Recherches Hydrauliques, 1999, 37 (04): : 435 - 446
  • [47] Application of artificial neural networks to the simulation of a two dimensional flow
    Dibike, YB
    Abbott, MB
    JOURNAL OF HYDRAULIC RESEARCH, 1999, 37 (04) : 435 - 446
  • [48] Artificial neural networks and model-based recognition of three-dimensional objects from two-dimensional images
    Chao, Chih-Ho
    Dhawan, Atam P.
    Journal of Electronic Imaging, 1994, 3 (01) : 5 - 19
  • [49] Implementation of Two-Dimensional Image Result Analysis Using Artificial Neural Networks with the Counter propagation Method
    Paryati
    Lavate, Santosh H.
    Martin, Sagayam
    Salahddine, Krit
    Elngar, Ahmed A.
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 614 - 618
  • [50] Derivation of a correlation for drag coefficient in two-dimensional bounded supercavitating flows, using artificial neural networks
    Shafaghat, R.
    Hosseinalipour, S. M.
    Derakhshani, S. M. E.
    ARCHIVE OF APPLIED MECHANICS, 2010, 80 (07) : 771 - 784