Non-trivial fixed points of the renormalization group in six dimensions

被引:151
|
作者
Seiberg, N
机构
[1] Department of Physics and Astronomy, Rutgers University, Piscataway
关键词
D O I
10.1016/S0370-2693(96)01424-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We start a systematic analysis of supersymmetric field theories in six dimensions. We find necessary conditions for the existence of non-trivial interacting fixed points. String theory provides us with examples of such theories. We conjecture that there are many other examples.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 50 条
  • [31] NON-TRIVIAL PURSUITS
    CANBY, ET
    AUDIO, 1985, 69 (03): : 20 - &
  • [32] Explicit Heegner points: Kolyvagin's conjecture and non-trivial elements in the Shafarevich-Tate group
    Jetchev, Dimitar
    Lauter, Kristin
    Stein, William
    JOURNAL OF NUMBER THEORY, 2009, 129 (02) : 284 - 302
  • [33] Non-perturbative fixed points and renormalization group improved effective potential
    Dias, A. G.
    Gomez, J. D.
    Natale, A. A.
    Quinto, A. G.
    Ferrari, A. F.
    PHYSICS LETTERS B, 2014, 739 : 8 - 12
  • [34] Solutions of Liouville equations with non-trivial profile in dimensions 2 and 4
    Albesiano, Roberto
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 272 : 606 - 647
  • [35] Trivial stable structures with non-trivial reducts
    Evans, DM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 351 - 363
  • [36] An average equal to 1 for every non-trivial finite group
    Chis, Mihai
    Marin, Aenea
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (04): : 389 - 391
  • [37] Trivial and non-trivial machines in the animal and in man
    Ivanovas, G
    KYBERNETES, 2005, 34 (3-4) : 508 - 520
  • [38] KNOTS WHOSE GROUP IS A NON-TRIVIAL FREE PRODUCT WITH AMALGAMATION
    MATHIEU, Y
    VINCENT, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (16): : 1045 - 1047
  • [39] Renormalization group improvement of the effective potential in six dimensions
    Souza, Huan
    Ibiapina Bevilaqua, L.
    Lehum, A. C.
    PHYSICAL REVIEW D, 2020, 102 (04):
  • [40] A topological transformation group without non-trivial equivariant compactifications
    Pestov, Vladimir G.
    ADVANCES IN MATHEMATICS, 2017, 311 : 1 - 17