Artificial neural networks and physical modeling for determination of baseline consumption of CHP plants

被引:26
|
作者
Rossi, Francesco [1 ]
Velazquez, David [1 ]
Monedero, Inigo [2 ]
Biscarri, Felix [2 ]
机构
[1] Univ Seville, Dept Energy Engn, Seville, Spain
[2] Univ Seville, Dept Elect Technol, Seville, Spain
关键词
Baseline energy consumption; Industry; Cogeneration; ANN modeling; Thermodynamic modeling; POWER-PLANT; PERFORMANCE DIAGNOSTICS; EXPERT-SYSTEM; OPTIMIZATION; GAS; PREDICTION; CONTROLLER; VERIFICATION; SIMULATION; BOILERS;
D O I
10.1016/j.eswa.2014.02.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An effective modeling technique is proposed for determining baseline energy consumption in the industry. A CHP plant is considered in the study that was subjected to a retrofit, which consisted of the implementation of some energy-saving measures. This study aims to recreate the post-retrofit energy consumption and production of the system in case it would be operating in its past configuration (before retrofit) i.e., the current consumption and production in the event that no energy-saving measures had been implemented. Two different modeling methodologies are applied to the CHP plant: thermodynamic modeling and artificial neural networks (ANN). Satisfactory results are obtained with both modeling techniques. Acceptable accuracy levels of prediction are detected, confirming good capability of the models for predicting plant behavior and their suitability for baseline energy consumption determining purposes. High level of robustness is observed for ANN against uncertainty affecting measured values of variables used as input in the models. The study demonstrates ANN great potential for assessing baseline consumption in energy-intensive industry. Application of ANN technique would also help to overcome the limited availability of on-shelf thermodynamic software for modeling all specific typologies of existing industrial processes. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4658 / 4669
页数:12
相关论文
共 50 条
  • [21] Modeling relational responding with artificial neural networks
    Mendoza, Janelle
    Ghirlanda, Stefano
    BEHAVIOURAL PROCESSES, 2023, 205
  • [22] RELATIVE HUMIDITY MODELING WITH ARTIFICIAL NEURAL NETWORKS
    Kuzugudenli, E.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (04): : 5227 - 5235
  • [23] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [24] Artificial neural networks for modeling chemosensory reception
    Malaka, Rainer
    Ragg, Thomas
    Artificial Neural Networks in Engineering - Proceedings (ANNIE'94), 1994, 4 : 573 - 578
  • [25] Statistical Compact Modeling With Artificial Neural Networks
    Dai, Wu
    Li, Yu
    Rong, Zhao
    Peng, Baokang
    Zhang, Lining
    Wang, Runsheng
    Huang, Ru
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (12) : 5156 - 5160
  • [26] Modeling saltwater upcoming with artificial neural networks
    Coppola, Emery
    Szdarovsky, Ferenc
    McIane, Charles
    Pulton, Mary
    Magelky, Robin
    EFFECTIVE UTILIZATION OF AGRICULTURAL SOIL & WATER RESOURCES AND PROTECTION OF ENVIRONMENT, 2007, : 3 - 8
  • [27] Modeling of eucalyptus productivity with artificial neural networks
    Sampaio de Freitas, Eliane Cristina
    de Paiva, Haroldo Nogueira
    Lima Neves, Julio Cesar
    Marcatti, Gustavo Eduardo
    Leite, Helio Garcia
    INDUSTRIAL CROPS AND PRODUCTS, 2020, 146
  • [28] Modeling Axonal Plasticity in Artificial Neural Networks
    Ryland, James
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1119 - 1146
  • [29] THE ARTIFICIAL NEURAL NETWORKS AND THE DRYING PROCESS MODELING
    JINESCU, G
    LAVRIC, V
    DRYING TECHNOLOGY, 1995, 13 (5-7) : 1579 - 1586
  • [30] Modeling soil collapse by artificial neural networks
    Basma A.A.
    Kallas N.
    Geotechnical & Geological Engineering, 2004, 22 (3) : 427 - 438