An upper bound on the radius of a 3-edge-connected C4-free graph

被引:0
|
作者
Fundikwa, Blessings T. [1 ]
Mazorodze, Jaya P. [1 ]
Mukwembi, Simon [2 ]
机构
[1] Univ Zimbabwe, Dept Math, Harare, Zimbabwe
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
关键词
Radius; Edge-connectivity;
D O I
10.1007/s13370-020-00837-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an upper bound on the radius of a C-4-free graph in terms order and edge-connectivity. In particular we show that if G is a 3-edge-connected C-4-free graph of order n and radius r, then the inequality r <= n/4 + 58/4 holds. Moreover, graphs are constructed to show that the bounds are asymptotically sharp.
引用
收藏
页码:467 / 474
页数:8
相关论文
共 50 条
  • [1] AN UPPER BOUND ON THE DIAMETER OF A 3-EDGE-CONNECTED C4-FREE GRAPH
    Fundikwa, Blessings T.
    Mazorodze, Jaya P.
    Mukwembi, Simon
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1931 - 1938
  • [2] An Upper Bound on the Diameter of a 3-Edge-Connected C4-Free Graph
    Blessings T. Fundikwa
    Jaya P. Mazorodze
    Simon Mukwembi
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1931 - 1938
  • [3] An upper bound on the radius of a 3-edge-connected graph
    Dankelmann, Peter
    Mukwembi, Simon
    Swart, Henda C.
    UTILITAS MATHEMATICA, 2007, 73 : 207 - 215
  • [4] An improved upper bound for the TSP in cubic 3-edge-connected graphs
    Gamarnik, D
    Lewenstein, M
    Sviridenko, M
    OPERATIONS RESEARCH LETTERS, 2005, 33 (05) : 467 - 474
  • [5] Improved upper bound on the Frank number of 3-edge-connected graphs
    Barat, Janos
    Blazsik, Zoltan L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 118
  • [6] AN UPPER BOUND FOR THE RADIUS OF A 3-CONNECTED GRAPH
    HARANT, J
    DISCRETE MATHEMATICS, 1993, 122 (1-3) : 335 - 341
  • [7] On 3-edge-connected supereulerian graphs in graph family C(l, k)
    Li, Xiaomin
    Li, Dengxin
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2010, 310 (17-18) : 2455 - 2459
  • [8] An Upper Bound on the Radius of a 3-Vertex-ConnectedC4-Free Graph
    Fundikwa, Blessings T.
    Mazorodze, Jaya P.
    Mukwembi, Simon
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [9] MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS OF A GRAPH ONLINE
    GALIL, Z
    ITALIANO, GF
    SIAM JOURNAL ON COMPUTING, 1993, 22 (01) : 11 - 28
  • [10] C4-free edge ideals
    Nevo, Eran
    Peeva, Irena
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 37 (02) : 243 - 248