Improved upper bound on the Frank number of 3-edge-connected graphs

被引:0
|
作者
Barat, Janos [1 ]
Blazsik, Zoltan L. [2 ]
机构
[1] Univ Pannonia, Alfred Reny Inst Math, Dept Math, Egyet Utca 10, H-8200 Veszprem, Hungary
[2] SZTE Bolyai Inst, Alfred Renyi Inst Math, MTA ELTE Geometr & Algebra Combinator Res Grp, Veszprem, Hungary
关键词
D O I
10.1016/j.ejc.2023.103913
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an orientation O of the graph G, an arc e is deletable if and only if O-e is strongly connected. For a 3-edge-connected graph G, the Frank number is the minimum k for which G admits k strongly connected orientations such that for every edge e of G the corresponding arc is deletable in at least one of the k orientations. Horsch and Szigeti conjectured the Frank number is at most 3 for every 3-edge-connected graph G. We prove an upper bound of 5, which improves the previous bound of 7. (c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] An improved upper bound for the TSP in cubic 3-edge-connected graphs
    Gamarnik, D
    Lewenstein, M
    Sviridenko, M
    OPERATIONS RESEARCH LETTERS, 2005, 33 (05) : 467 - 474
  • [2] An upper bound on the radius of a 3-edge-connected graph
    Dankelmann, Peter
    Mukwembi, Simon
    Swart, Henda C.
    UTILITAS MATHEMATICA, 2007, 73 : 207 - 215
  • [3] On 3-Edge-Connected Supereulerian Graphs
    Lai, Hong-Jian
    Li, Hao
    Shao, Yehong
    Zhan, Mingquan
    GRAPHS AND COMBINATORICS, 2011, 27 (02) : 207 - 214
  • [4] On 3-Edge-Connected Supereulerian Graphs
    Hong-Jian Lai
    Hao Li
    Yehong Shao
    Mingquan Zhan
    Graphs and Combinatorics, 2011, 27 : 207 - 214
  • [5] A Note on the 3-Edge-Connected Supereulerian Graphs
    Xiao Min LIDeng Xin LI School of Mathematics and StatisticsChongqing Technology and Business UniversityChongqing PRChina
    数学研究与评论, 2010, 30 (05) : 944 - 946
  • [6] Connectivity of orientations of 3-edge-connected graphs
    Horsch, Florian
    Szigeti, Zoltan
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 94
  • [7] Flows in 3-edge-connected bidirected graphs
    Wei, Erling
    Tang, Wenliang
    Wang, Xiaofeng
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (02) : 339 - 348
  • [8] Flows in 3-edge-connected bidirected graphs
    Erling Wei
    Wenliang Tang
    Xiaofeng Wang
    Frontiers of Mathematics in China, 2011, 6 : 339 - 348
  • [10] Group Connectivity in 3-Edge-Connected Graphs
    Yang, Fan
    Li, Xiangwen
    GRAPHS AND COMBINATORICS, 2012, 28 (05) : 743 - 750