Food-Energy-Water Analysis at Spatial Scales for Districts in the Yangtze River Basin (China)

被引:9
|
作者
Wang, Zhuomin [1 ]
Thuy Nguyen [2 ]
Westerhoff, Paul [2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Luojia Hill, Wuhan, Hubei, Peoples R China
[2] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
climate; food-energy-water system; Yangtze River basin; SOLAR POWER; NEXUS; CONSUMPTION; CHALLENGES; MANAGEMENT; IMPACT; PLANTS;
D O I
10.1089/ees.2018.0456
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding the nexus between food, energy, and water (FEW) systems is emerging as a critical area of study since federal research agencies in North America and Europe began highlighting the needs related to data collection/management, systems optimization, and opportunities for new technologies. Little information regarding FEW systems exists across Asia, including within the Yangtze River basin, despite having 1/15th of the world's population living within the basin and generating as much as 40% of the Chinese gross domestic product. This research provides a case study of FEW systems with analysis in the Yangtze River basin, showing the spatial and temporal variations in water availability/use, food production, and energy production. At a district-level scale in China, we integrated key Chinese data sets from multiple industrial, commercial, and agricultural sectors together with key land use and hydrologic information to evaluate the FEW parameters normalized to the land area of each district rather than the commonly used approach where FEW consumptive parameters are normalized to population (i.e., per capita). The results illustrated the types of data sets currently available within China to conduct FEW system analyses and identified districts that are net producers or dependents regarding food, energy, or water. The northeastern portion of the Yangtze River basin have several districts that are net negative relative to the amount of water that falls within the district boundaries versus all water uses plus evaporation, with the most stressed districts lacking as much as 0.5-1 m annually of equivalent rainfall per unit land area. The geospatial analysis concludes that policies to manage the FEW system cannot be considered for a single district alone, nor the Yangtze River watershed in its entirety, but instead needs to consider the interdependencies among districts and consider encouraging growth (agriculture, industry, or population) within more water-abundant regions.
引用
收藏
页码:789 / 797
页数:9
相关论文
共 50 条
  • [31] Spatial patterns and temporal variability of dryness/wetness in the Yangtze River Basin, China
    Zhao, Guangju
    Mu, Xingmin
    Hoermann, Georg
    Fohrer, Nicola
    Xiong, Ming
    Su, Buda
    Li, Xiucang
    QUATERNARY INTERNATIONAL, 2012, 282 : 5 - 13
  • [32] Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China
    Jiali Guo
    Shenglian Guo
    Yu Li
    Hua Chen
    Tianyuan Li
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 459 - 475
  • [33] Spatial and temporal variation of extreme precipitation indices in the Yangtze River basin, China
    Guo, Jiali
    Guo, Shenglian
    Li, Yu
    Chen, Hua
    Li, Tianyuan
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (02) : 459 - 475
  • [34] Temporal and Spatial Characteristics of River Water Quality and Its Influence Factors in the TAIHU Basin Plains, Lower Yangtze River, China
    Gao, Bin
    Xu, Youpeng
    Lin, Zhixin
    Lu, Miao
    Wang, Qiang
    WATER, 2022, 14 (10)
  • [35] Impact of environmental factors on water quality at multiple spatial scales and its spatial variation in Huai River Basin, China
    Jun Xia
    LongFeng Wang
    JingJie Yu
    CheSheng Zhan
    YongYong Zhang
    YunFeng Qiao
    YueLing Wang
    Science China Earth Sciences, 2018, 61 : 82 - 92
  • [36] Impact of environmental factors on water quality at multiple spatial scales and its spatial variation in Huai River Basin, China
    Xia Jun
    Wang LongFeng
    Yu JingJie
    Zhan CheSheng
    Zhang YongYong
    Qiao YunFeng
    Wang YueLing
    SCIENCE CHINA-EARTH SCIENCES, 2018, 61 (01) : 82 - 92
  • [37] Impact of environmental factors on water quality at multiple spatial scales and its spatial variation in Huai River Basin, China
    XIA Jun
    WANG LongFeng
    YU JingJie
    ZHAN CheSheng
    ZHANG YongYong
    QIAO YunFeng
    WANG YueLing
    Science China(Earth Sciences), 2018, 61 (01) : 82 - 92
  • [38] Effects of landscape pattern on water quality at multi-spatial scales in Wuding River Basin, China
    Chen’guang Zhao
    Peng Li
    Zixuan Yan
    Chaoya Zhang
    Yongxia Meng
    Guojun Zhang
    Environmental Science and Pollution Research, 2024, 31 : 19699 - 19714
  • [39] Response of Water Quality and Macroinvertebrate to Landscape at Multiple Lateral Spatial Scales in the Sha River Basin, China
    Wen, Teng
    Sheng, Sheng
    Xu, Chi
    Xu, Delin
    Wan, Yun
    An, Shuqing
    CLEAN-SOIL AIR WATER, 2015, 43 (03) : 341 - 350
  • [40] Effects of landscape pattern on water quality at multi-spatial scales in Wuding River Basin, China
    Zhao, Chen'guang
    Li, Peng
    Yan, Zixuan
    Zhang, Chaoya
    Meng, Yongxia
    Zhang, Guojun
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (13) : 19699 - 19714