Cryogenic composite detectors for the dark matter experiments CRESST and EURECA

被引:4
|
作者
Roth, S. [1 ]
Ciemniak, C. [1 ]
Coppi, C. [1 ]
Feilitzsch, F. V. [1 ]
Guetlein, A. [1 ]
Isaila, C. [1 ]
Lanfranchi, J. -C. [1 ]
Pfister, S. [1 ]
Potzel, W. [1 ]
Westphal, W. [1 ]
机构
[1] Tech Univ Munich, Phys Dept E15, D-85748 Garching, Germany
关键词
Dark matter; Tungsten TES; Cryogenic phonon and light detectors; Composite detector design; Thermal detector model; NUCLEAR RECOILS;
D O I
10.1016/j.optmat.2008.09.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Weakly interacting massive particles (WIMPs) are candidates for non-baryonic dark matter. WIMPs are supposed to interact with baryonic matter via scattering off nuclei producing a nuclear recoil with energies up to a few 10 keV with a very low interaction rate of similar to 10(-6) events per kg of target material and day in the energy region of interest. The dark matter experiment cryogenic rare event search with superconducting thermometers (CRESST) and the European underground rare event calorimeter array (EURECA) project are aimed at the direct detection of WIMPs with the help of very sensitive modularised cryogenic detectors that basically consist of a transition edge sensor (TES) in combination with a massive absorber crystal. In the CRESST experiment the search for coherent WIMP-nucleon scattering events is validated by the detection of two processes. In the scintillating absorber single crystal, CaWO(4), heat (phonons) and scintillation light are produced and detected with two independent cryogenic detectors: a phonon channel and a separate light channel. The development of such cryogenic detectors and the potential ton-scale production are investigated in this paper. To decouple the TES production from the choice of the target material in order to avoid heating cycles of the absorber crystal and to allow pretesting of the TESs, a composite detector design (CDD) for the detector production has been developed and studied. An existing thermal detector model has been extended to the CDD, in order to investigate, understand, and optimize the performance of composite detectors. This extended model, which has been worked out in detail, can be expected to provide a considerable help when tailoring composite detectors to the requirements of various experiments. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1415 / 1420
页数:6
相关论文
共 50 条
  • [11] EURECA -- the European future of cryogenic dark matter searches
    Kraus, H.
    Bauer, M.
    Benoit, A.
    Bluemer, J.
    Broniatowski, A.
    Camus, P.
    Chantelauze, A.
    Chapellier, M.
    Chardin, G.
    Christ, P.
    Coppi, C.
    De Jesus, M.
    De Lesquen, A.
    Deschamps, H.
    Di Stefano, P.
    Dumoulin, L.
    Eitel, K.
    von Feilitzsch, F.
    Fesquet, M.
    Gascon, J.
    Gerbier, G.
    Goldbach, C.
    Gros, M.
    Hauff, D.
    Henry, S.
    Horn, M.
    Isaila, C.
    Kimmerle, M.
    Jochum, J.
    Juillard, A.
    Lemrani, R.
    Luca, M.
    Marnieros, S.
    McGowan, R.
    Mikhailik, V.
    Navick, X-F
    Niinikoski, T.
    Nollez, G.
    Pantic, E.
    Pari, P.
    Petricca, F.
    Potzel, W.
    Proebst, F.
    Rau, W.
    Ritter, F.
    Rottler, K.
    Scholl, S.
    Seidel, W.
    Sanglard, V.
    Stern, M.
    TAUP 2005: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, 2006, 39 : 139 - +
  • [12] Cryogenic detectors for dark matter
    McCammon, D
    INSTRUMENTATION IN ELEMENTARY PARTICLE PHYSICS: THE VII ICFA SCHOOL, 1998, (422): : 225 - 234
  • [13] Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA
    Munster, A.
    Sivers, M. V.
    Angloher, G.
    Bento, A.
    Bucci, C.
    Canonica, L.
    Erb, A.
    Feilitzsch, F. V.
    Gorla, P.
    Guetlein, A.
    Hauff, D.
    Jochum, J.
    Kraus, H.
    Lanfranchi, J. -C.
    Laubenstein, M.
    Loebell, J.
    Ortigoza, Y.
    Petricca, F.
    Potzel, W.
    Proebst, F.
    Puimedon, J.
    Reindl, F.
    Roth, S.
    Rottler, K.
    Sailer, C.
    Schaffner, K.
    Schieck, J.
    Scholl, S.
    Schoenert, S.
    Seidel, W.
    Stodolsky, L.
    Strandhagen, C.
    Strauss, R.
    Tanzke, A.
    Uffinger, M.
    Ulrich, A.
    Usherov, I.
    Wawoczny, S.
    Willers, M.
    Wuestrich, M.
    Zoeller, A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (05):
  • [14] Dark Matter Detection with Cryogenic Detectors
    Bauer, Daniel A.
    TAUP2007: TENTH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, 2008, 120
  • [15] Implications of the DAMA and CRESST experiments for mirror matter-type dark matter
    Foot, R
    PHYSICAL REVIEW D, 2004, 69 (03):
  • [16] Neutron scattering facility for characterization of CRESST and EURECA detectors at mK temperatures
    Lanfranchi, J. -C.
    Ciemniak, C.
    Coppi, C.
    von Feilitzsch, F.
    Guetlein, A.
    Hagn, H.
    Isaila, C.
    Jochum, J.
    Kimmerle, M.
    Pfister, S.
    Potzel, W.
    Rau, W.
    Roth, S.
    Rottler, K.
    Sailer, C.
    Scholl, S.
    Usherov, I.
    Westphal, W.
    OPTICAL MATERIALS, 2009, 31 (10) : 1405 - 1409
  • [17] CRESST dark matter search
    Bruckmayer, M
    Cozzini, C
    Di Stefano, P
    Frank, T
    Hauff, D
    Pröbst, F
    Seidel, W
    Sergeyev, I
    Stodolsky, L
    Von Feilitzsch, F
    Jagemann, T
    Jochum, J
    Schnagl, J
    Stark, M
    Wulandari, H
    Cooper, S
    Keeling, R
    Kraus, H
    Marchese, J
    Ramachers, Y
    Bucci, C
    IDENTIFICATION OF DARK MATTER, 2001, : 403 - 408
  • [18] Cryogenic detectors for the EDELWEISS dark matter search
    Luca, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 581 (1-2): : 136 - 138
  • [19] CRYOGENIC DETECTORS FOR DARK-MATTER SEARCHES
    SEIDEL, W
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1993, 688 : 632 - 638
  • [20] The CRESST dark matter search
    Jochum, J.
    Angloher, G.
    Bauer, M.
    Bavykina, I.
    Brown, A.
    Bucci, C.
    Ciemniak, C.
    Deuter, G.
    von Feilitzsch, F.
    Hauff, D.
    Henry, S.
    Huff, P.
    Isaila, C.
    Kiefer, M.
    Kimmerle, M.
    Kraus, H.
    Kronseder, Q.
    Lanfranchi, J. -C.
    Mikhailik, V. B.
    Petricca, F.
    Pfister, S.
    Potzel, W.
    Proebst, F.
    Roth, S.
    Rottler, K.
    Sailer, C.
    Schaffner, K.
    Schmaler, J.
    Scholl, S.
    von Sivers, M.
    Seidel, W.
    Stodolsky, L.
    Strandhagen, C.
    Strauss, R.
    Usherov, I.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2011, 66 (02) : 202 - 207