Oroxylin A increases the sensitivity of temozolomide on glioma cells by hypoxia-inducible factor 1α/hedgehog pathway under hypoxia

被引:32
|
作者
Wei, Mian [1 ]
Ma, Rong [2 ]
Huang, Shaoliang [1 ]
Liao, Yan [1 ]
Ding, Youxiang [1 ]
Li, Zhaohe [1 ]
Guo, Qinglong [1 ]
Tan, Renxiang [3 ]
Zhang, Lulu [4 ]
Zhao, Li [1 ]
机构
[1] China Pharmaceut Univ, Jiangsu Key Lab Carcinogenesis & Intervent, State Key Lab Nat Med, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 1, Dept Anesthesiol, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Univ Chinese Med, State Key Lab Cultivat Base TCM Qual & Efficacy, Nanjing, Jiangsu, Peoples R China
[4] Nanjing Med Univ, Sch Publ Hlth, Dept Toxicol, Key Lab Modern Toxicol,Minist Educ, Nanjing 211166, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
hedgehog; HIF-1; alpha; hypoxia; oroxylin A; resistance; SONIC-HEDGEHOG; MULTIDRUG-RESISTANCE; GLIOBLASTOMA CELLS; DRUG-RESISTANCE; STEM-CELLS; REVERSES; EXPRESSION; MICROENVIRONMENT; MEDULLOBLASTOMA; ACTIVATION;
D O I
10.1002/jcp.28361
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Microenvironmental hypoxia-mediated drug resistance is responsible for the failure of cancer therapy. To date, the role of the hedgehog pathway in resistance to temozolomide (TMZ) under hypoxia has not been investigated. In this study, we discovered that the increasing hypoxia-inducible factor 1 alpha(HIF-1 alpha) activated the hedgehog pathway in hypoxic microenvironment by promoting autocrine secretion of sonic hedgehog protein (Shh), and then upregulating transfer of Gli1 to the nucleus, finally contributed to TMZ resistance in glioma cells. Oroxylin A (C16H12O5), a bioactive flavonoid, could induce HIF-1 alpha degradation via prolyl-hydroxylases-VHL signaling pathway, resulting in the inactivation of the hedgehog. Besides, oroxylin A increased the expression of Sufu, which is a negative regulator of Gli1. By this mechanism, oroxylin A sensitized TMZ on glioma cells. U251 intracranial transplantation model and GL261 xenograft model were used to confirm the reversal effects of oroxylin A in vivo. In conclusion, our results demonstrated that HIF-1 alpha/hedgehog pathway conferred TMZ resistance under hypoxia, and oroxylin A was capable of increasing the sensitivity of TMZ on glioma cells in vitro and in vivo by inhibiting HIF-1 alpha/hedgehog pathway and depressing the activation of Gli1 directly.
引用
收藏
页码:17392 / 17404
页数:13
相关论文
共 50 条
  • [31] Regulation of Vascularization by Hypoxia-Inducible Factor 1
    Semenza, Gregg L.
    HYPOXIA AND CONSEQUENCES FROM MOLECULE TO MALADY, 2009, 1177 : 2 - 8
  • [32] Hypoxia-inducible factor 1 in autoimmune diseases
    Deng, Wei
    Feng, Xuebing
    Li, Xia
    Wang, Dandan
    Sun, Lingyun
    CELLULAR IMMUNOLOGY, 2016, 303 : 7 - 15
  • [33] Hypoxia-inducible factor 1α in oral cancer
    Brennan, PA
    Mackenzie, N
    Quintero, M
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2005, 34 (07) : 385 - 389
  • [34] Hypoxia-Inducible Factor 1 and Cardiovascular Disease
    Semenza, Gregg L.
    ANNUAL REVIEW OF PHYSIOLOGY, VOL 76, 2014, 76 : 39 - 56
  • [35] Hypoxia-inducible factor 1 and cancer pathogenesis
    Semenza, Gregg L.
    IUBMB LIFE, 2008, 60 (09) : 591 - 597
  • [36] The role of hypoxia-inducible factor 1 in atherosclerosis
    Gao, Linggen
    Chen, Qian
    Zhou, Xianliang
    Fan, Li
    JOURNAL OF CLINICAL PATHOLOGY, 2012, 65 (10) : 872 - 876
  • [37] Signal transduction to hypoxia-inducible factor 1
    Semenza, GL
    BIOCHEMICAL PHARMACOLOGY, 2002, 64 (5-6) : 993 - 998
  • [38] Nitric oxide and the hypoxia-inducible factor 1
    Sandau, KB
    Brüne, B
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2001, 363 (04) : R43 - R43
  • [39] Hypoxia-Inducible Factor 1 in Tumor Radioresistance
    Harada, Hiroshi
    Hiraoka, Masahiro
    CURRENT SIGNAL TRANSDUCTION THERAPY, 2010, 5 (03) : 188 - 196
  • [40] Regulation of Metabolism by Hypoxia-Inducible Factor 1
    Semenza, G. L.
    METABOLISM AND DISEASE, 2011, 76 : 347 - +