Mathematical Modeling of Slope Flows of Non-Newtonian Media

被引:5
|
作者
Eglit, M. E. [1 ]
Yakubenko, A. E. [2 ]
Zayko, J. S. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
[2] Moscow MV Lomonosov State Univ, Inst Mech, Michurinskii Pr 1, Moscow 119192, Russia
基金
俄罗斯基础研究基金会;
关键词
SNOW; ENTRAINMENT; RHEOLOGY; AVALANCHES;
D O I
10.1134/S0081543818010194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to the mathematical modeling of the dynamics of geophysical flows on mountain slopes, e.g., rapid landslides, debris flows, avalanches, lava flows, etc. Such flows can be very dangerous for people and various objects. A brief description is given of models that have been used so far, as well as of new, more sophisticated, models, including those developed by the authors. In these new models, nonlinear rheological properties of the moving medium, entrainment of the underlying material, and the turbulence are taken into account. The results of test simulations of flows down long homogeneous slopes are presented, which demonstrate the influence of rheological properties, as well as of turbulence and mass entrainment, on the behavior of the flow.
引用
收藏
页码:219 / 229
页数:11
相关论文
共 50 条
  • [21] Reentrant corner flows of Newtonian and non-Newtonian fluids
    Koplik, J
    Banavar, JR
    JOURNAL OF RHEOLOGY, 1997, 41 (03) : 787 - 805
  • [22] ENTRANCE FLOWS OF NON-NEWTONIAN FLUIDS
    DUDA, JL
    VRENTAS, JS
    TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1973, 17 (01): : 89 - 108
  • [23] Numerical simulation of Newtonian and non-Newtonian flows in bypass
    Prokop, Vladimir
    Kozel, Karel
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (08) : 1725 - 1733
  • [24] Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian flows
    Cancès, E
    Catto, I
    Gati, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) : 60 - 82
  • [25] Non-Newtonian effects in viscous flows
    Zak, M
    Meyers, RE
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (07) : 1423 - 1460
  • [26] Jet flows in non-Newtonian fluids
    H. Stehr
    W. Schneider
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 922 - 941
  • [27] Stability of parallel non-newtonian flows
    Ozgen, S
    Sarma, GSR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S249 - S250
  • [28] Studies on Non-Newtonian flows in China
    Jiang, TQ
    MULTIPHASE, NON-NEWTONIAN AND REACTING FLOWS, VOL 2, PROCEEDINGS, 2004, : 380 - 384
  • [29] Jet flows in non-Newtonian fluids
    Stehr, H
    Schneider, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (06): : 922 - 941
  • [30] TRANSIENT FLOWS IN NON-NEWTONIAN LIQUIDS
    DEBNATH, L
    TENSOR, 1973, 27 (02): : 257 - 264