Cryogen-free variable temperature scanning SQUID microscope

被引:13
|
作者
Bishop-Van Horn, Logan [1 ,2 ]
Cui, Zheng [1 ,3 ]
Kirtley, John R. [4 ]
Moler, Kathryn A. [1 ,3 ,4 ]
机构
[1] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2019年 / 90卷 / 06期
关键词
SUPERCONDUCTIVITY;
D O I
10.1063/1.5085008
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Scanning Superconducting QUantum Interference Device (SQUID) microscopy is a powerful tool for imaging local magnetic properties of materials and devices, but it requires a low-vibration cryogenic environment, traditionally achieved by thermal contact with a bath of liquid helium or the mixing chamber of a wet dilution refrigerator. We mount a SQUID microscope on the 3 K plate of a Bluefors cryocooler and characterize its vibration spectrum by measuring SQUID noise in a region of sharp flux gradient. By implementing passive vibration isolation, we reduce relative sensor-sample vibrations to 20 nm in-plane and 15 nm out-of-plane. A variable-temperature sample stage that is thermally isolated from the SQUID sensor enables the measurement at sample temperatures from 2.8 K to 110 K. We demonstrate these advances by imaging inhomogeneous diamagnetic susceptibility and vortex pinning in optimally doped yttrium barium copper oxide above 90 K.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Scanning SQUID microscope for samples at room temperature
    Univ of Giessen, Germany
    IEEE Trans Appl Supercond, 2 III (4111-4114):
  • [32] A scanning SQUID microscope for samples at room temperature
    Dechert, J
    Mueck, M
    Heiden, C
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999, 9 (02) : 4111 - 4114
  • [33] Cryogen-free one hundred microkelvin refrigerator
    Yan, Jiaojie
    Yao, Jianing
    Shvarts, Vladimir
    Du, Rui-Rui
    Lin, Xi
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (02):
  • [34] Structural analysis of a cryogen-free refrigerator for space
    Emes, MR
    Hepburn, ID
    Ray, RJ
    Worth, LBC
    CRYOGENICS, 2001, 41 (11-12) : 771 - 779
  • [35] Advances in the first cryogen-free hybrid magnet
    Watanabe, K
    Nishijima, G
    Awaji, S
    Takahashi, K
    Koyama, K
    Motokawa, M
    Ishizuka, A
    Hasebe, T
    Sakuraba, J
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2004, 14 (02) : 388 - 392
  • [36] Compact Magnetic Force Microscope (MFM) System in a 12 T Cryogen-Free Superconducting Magnet
    Abas, Asim
    Geng, Tao
    Meng, Wenjie
    Wang, Jihao
    Feng, Qiyuan
    Zhang, Jing
    Wang, Ze
    Hou, Yubin
    Lu, Qingyou
    MICROMACHINES, 2022, 13 (11)
  • [37] A piezoelectric rotatable magnetic force microscope system in a 10 T cryogen-free superconducting magnet
    Xiang, Kui
    Hou, Yubin
    Wang, Jihao
    Zhang, Jing
    Feng, Qiyuan
    Wang, Ze
    Meng, Wenjie
    Lu, Qingyou
    Lu, Yalin
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (09):
  • [38] Top loading cryogen-free apparatus for low temperature thermophysical properties measurement
    Liu, Huiming
    Gong, Linghui
    Xu, Dong
    Huang, Chuanjun
    Zhang, Meimei
    Xu, Peng
    Li, Laifeng
    CRYOGENICS, 2014, 62 : 11 - 13
  • [39] Realization of an ultra-high precision temperature control in a cryogen-free cryostat
    Gao, Bo
    Pan, Changzhao
    Chen, Yanyan
    Song, Yaonan
    Zhang, Haiyang
    Han, Dongxu
    Liu, Wenjing
    Chen, Hui
    Luo, Ercang
    Pitre, Laurent
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (10):
  • [40] A Cryogen-Free Miniature Dilution Refrigerator for Low-Temperature Detector Applications
    G. Teleberg
    S. T. Chase
    L. Piccirillo
    Journal of Low Temperature Physics, 2008, 151 : 669 - 674