Variational approximation of anisotropic functionals on partitions

被引:7
|
作者
Bellettini, G. [1 ]
Braides, A. [1 ]
Riey, G. [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1007/s10231-003-0090-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an approximation result in the sense of Gamma-convergence for functionals defined on partitions modelling anisotropic multi-phase systems.
引用
收藏
页码:75 / 93
页数:19
相关论文
共 50 条
  • [21] Approximation of an optimal control problem in coefficient for variational inequality with anisotropic p-Laplacian
    Olha P. Kupenko
    Rosanna Manzo
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [22] A NOTE ON NON LOWER SEMICONTINUOUS PERIMETER FUNCTIONALS ON PARTITIONS
    Magni, Annibale
    Novaga, Matteo
    NETWORKS AND HETEROGENEOUS MEDIA, 2016, 11 (03) : 501 - 508
  • [23] ON THE APPROXIMATION OF MEASURABLE LINEAR FUNCTIONALS
    SMOLENSKI, W
    STATISTICS & PROBABILITY LETTERS, 1985, 3 (04) : 205 - 207
  • [24] NORMAL APPROXIMATION FOR STABILIZING FUNCTIONALS
    Lachieze-Rey, Raphael
    Schulte, Matthias
    Yukich, J. E.
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (02): : 931 - 993
  • [25] APPROXIMATION OF THE MISES FUNCTIONALS DISTRIBUTION
    BOROVSKIKH, YV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (02): : 6 - 9
  • [26] Approximation related to quotient functionals
    Setzer, S.
    Steidl, G.
    Teuber, T.
    Moerkotte, G.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (03) : 545 - 558
  • [27] Approximation of nonlinear integral functionals
    Bogachev, V. I.
    Lipchyus, A. A.
    DOKLADY MATHEMATICS, 2009, 80 (02) : 749 - 754
  • [28] Approximation of nonlinear integral functionals
    V. I. Bogachev
    A. A. Lipchyus
    Doklady Mathematics, 2009, 80 : 749 - 754
  • [29] A note on classification and the approximation of functionals
    Sandberg, IW
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1999, 27 (04) : 443 - 445
  • [30] Approximation of occupation time functionals
    Altmeyer, Randolf
    BERNOULLI, 2021, 27 (04) : 2714 - 2739