Fuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic and Simulated Annealing Methods

被引:8
|
作者
Yasuda, Makoto [1 ]
Furuhashi, Takeshi [2 ]
机构
[1] Gifu Natl Coll Technol, Dept Elect & Comp Engn, Motosu 5010495, Japan
[2] Nagoya Univ, Dept Computat Sci & Engn, Nagoya, Aichi 4648603, Japan
来源
关键词
fuzzy c-means clustering; fuzzy entropy; Fermi-Dirac distribution; deterministic annealing; simulated annealing; OPTIMIZATION;
D O I
10.1587/transinf.E92.D.1232
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article explains how to apply the deterministic annealing (DA) and simulated annealing (SA) methods to fuzzy entropy based fuzzy c-means clustering. By regularizing the fuzzy c-means method with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function, well known in statistical mechanics, is obtained, and, while optimizing its parameters by SA, the minimum of the Helmholtz free energy for fuzzy c-means clustering is searched by DA. Numerical experiments are performed and the obtained results indicate that this combinatorial algorithm of SA and DA can represent various cluster shapes and divide data more properly and stably than the standard single DA algorithm.
引用
收藏
页码:1232 / 1239
页数:8
相关论文
共 50 条
  • [41] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [42] Intuitionistic fuzzy C-means clustering algorithms
    Zeshui Xu1
    2.Institute of Sciences
    3.Department of Information Systems
    [J]. Journal of Systems Engineering and Electronics, 2010, 21 (04) : 580 - 590
  • [43] An efficient Fuzzy C-Means clustering algorithm
    Hung, MC
    Yang, DL
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 225 - 232
  • [44] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204
  • [45] A novel fuzzy C-means clustering algorithm
    Li, Cuixia
    Yu, Jian
    [J]. ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2006, 4062 : 510 - 515
  • [46] Ensemble Clustering via Fuzzy c-Means
    Wan, Xin
    Lin, Hao
    Li, Hong
    Liu, Guannan
    An, Maobo
    [J]. 2017 14TH INTERNATIONAL CONFERENCE ON SERVICES SYSTEMS AND SERVICES MANAGEMENT (ICSSSM), 2017,
  • [47] The global Fuzzy C-Means clustering algorithm
    Wang, Weina
    Zhang, Yunjie
    Li, Yi
    Zhang, Xiaona
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3604 - +
  • [48] Fuzzy Clustering Using C-Means Method
    Krastev, Georgi
    Georgiev, Tsvetozar
    [J]. TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2015, 4 (02): : 144 - 148
  • [49] Improving Fuzzy C-Means Clustering Based on Adaptive Weighting
    Wang, Wei
    Wang, Chunheng
    Cui, Xia
    Wang, Ai
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 62 - 66
  • [50] Cluster Forests Based Fuzzy C-Means for Data Clustering
    Ben Ayed, Abdelkarim
    Ben Halima, Mohamed
    Alimi, Adel M.
    [J]. INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 564 - 573