Plane curves and p-adic roots of unity

被引:0
|
作者
Voloch, JF [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1017/S0004972700036637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following result: Let f(x,y) be a polynomial of degree d in two variables whose coefficents are integers in an unramified extension of Q(p). Assume that the reduction of f module p is irreducible of degree d and not a binomial. Assume also that p > d(2) + 2. Then the number of solutions of the inequality \f(zeta(1),zeta(2))\ < p(-1), with zeta(1), zeta(2) roots of unity in <(Q(p))over bar> or zero, is at most pd(2).
引用
收藏
页码:479 / 482
页数:4
相关论文
共 50 条
  • [31] Algebraic and analytic parallel transport on p-adic curves
    Ludsteck, Thomas
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2013, 83 (01): : 83 - 99
  • [32] Indices of hyperelliptic curves over p-adic fields
    Van Geel, J
    Yanchevskii, VI
    MANUSCRIPTA MATHEMATICA, 1998, 96 (03) : 317 - 333
  • [33] Indices of hyperelliptic curves over p-adic fields
    J. Van Geel
    V. I. Yanchevskii
    manuscripta mathematica, 1998, 96 : 317 - 333
  • [34] ROOTS OF XM + 1 IN P-ADIC FIELD QP
    EVERETT, CJ
    METROPOLIS, N
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (06): : A619 - A619
  • [35] A p-ADIC NONABELIAN CRITERION FOR GOOD REDUCTION OF CURVES
    Andreatta, Fabrizio
    Iovita, Adrian
    Kim, Minhyong
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (13) : 2597 - 2642
  • [36] HENSEL CODES OF SQUARE ROOTS OF P-ADIC NUMBERS
    Tahar, Zeraihi
    Mohamed, Kecies
    Knapp, Michael
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2010, 4 (01) : 32 - 44
  • [37] Analytic roots of solutions of p-adic differential equations
    Sarmant, MC
    ULTRAMETRIC FUNCTIONAL ANALYSIS, 2003, 319 : 345 - 368
  • [38] p-adic representations and vector bundles on Mumford curves
    Herz, G.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2007, 77 (1): : 81 - 96
  • [39] p-adic Integration on Bad Reduction Hyperelliptic Curves
    Katz, Eric
    Kaya, Enis
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (08) : 6038 - 6106
  • [40] p-adic point counting on singular superelliptic curves
    Burko, Robert M.
    NUMBER THEORY RELATED TO MODULAR CURVES: MOMOSE MEMORIAL VOLUME, 2018, 701 : 35 - 52