Plane curves and p-adic roots of unity

被引:0
|
作者
Voloch, JF [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1017/S0004972700036637
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following result: Let f(x,y) be a polynomial of degree d in two variables whose coefficents are integers in an unramified extension of Q(p). Assume that the reduction of f module p is irreducible of degree d and not a binomial. Assume also that p > d(2) + 2. Then the number of solutions of the inequality \f(zeta(1),zeta(2))\ < p(-1), with zeta(1), zeta(2) roots of unity in <(Q(p))over bar> or zero, is at most pd(2).
引用
收藏
页码:479 / 482
页数:4
相关论文
共 50 条