Separation of DNA with different configurations on flat and nanopatterned surfaces

被引:31
|
作者
Li, Bingquan [1 ]
Fang, Xiaohua
Luo, Haobin
Seo, Young-Soo
Petersen, Eric
Ji, Yuan
Rafailovich, Miriam
Sokolov, Jonathan
Gersappe, Dilip
Chu, Benjamin
机构
[1] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[3] Harvard Univ, Cambridge, MA 02138 USA
关键词
D O I
10.1021/ac060686z
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We demonstrate that electrophoresis on a flat Si substrate is an effective method in separation of DNA with different configurations, e. g., linear, supercoiled, and relaxed or DNA of different length, e. g., supercoiled DNA ladder. The surface separation arises from the different number of contacts due to the conformational differences between adsorbed DNA chains. Imposing a Au nanopattern on the Si surface further improves the separation effect. The simulation of electric field on this patterned surface by the finite element method shows that Au nanodots act as local pinning points for DNA segments due to dielectrophoretic force. The results of molecular dynamics simulation showed that the conformational differences between adsorbed polymer chains were amplified on the patterned surface and enhanced separations were achieved, which are consistent with the experimental results.
引用
收藏
页码:4743 / 4751
页数:9
相关论文
共 50 条
  • [21] An analytical model of nanopatterned superhydrophobic surfaces
    K. Xiao
    Y. P. Zhao
    G. Ouyang
    X. L. Li
    [J]. Journal of Coatings Technology and Research, 2017, 14 : 1297 - 1306
  • [22] Nanopatterned polymer surfaces with bactericidal properties
    Dickson, Mary Nora
    Liang, Elena I.
    Rodriguez, Luis A.
    Vollereaux, Nicolas
    Yee, Albert F.
    [J]. BIOINTERPHASES, 2015, 10 (02)
  • [23] Wetting of heterogeneous nanopatterned inorganic surfaces
    Jarn, Mikael
    Brieler, Felix J.
    Kuemmel, Monica
    Grosso, David
    Linden, Mika
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (04) : 1476 - 1483
  • [24] Fibronectin adsorption to nanopatterned silicon surfaces
    Salakhutdinov, I.
    VandeVord, P.
    Palyvoda, O.
    Matthew, H.
    Tatagiri, G.
    Handa, H.
    Mao, G.
    Auner, G. W.
    Newaz, G.
    [J]. JOURNAL OF NANOMATERIALS, 2008, 2008
  • [25] HELIUM ON NANOPATTERNED SURFACES AT FINITE TEMPERATURE
    Hernandez, E. S.
    Ancilotto, F.
    Barranco, M.
    Hernando, A.
    Pi, M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (25-26): : 4915 - 4922
  • [26] Metastable Sessile Nanodroplets on Nanopatterned Surfaces
    Ritchie, John A.
    Yazdi, Jamileh Seyed
    Bratko, Dusan
    Luzar, Alenka
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (15): : 8634 - 8641
  • [27] Fibroblast growth on micro- and nanopatterned surfaces prepared by a novel sol–gel phase separation method
    Paula Reemann
    Triin Kangur
    Martin Pook
    Madis Paalo
    Liis Nurmis
    Ilmar Kink
    Orm Porosaar
    Külli Kingo
    Eero Vasar
    Sulev Kõks
    Viljar Jaks
    Martin Järvekülg
    [J]. Journal of Materials Science: Materials in Medicine, 2013, 24 : 783 - 792
  • [28] DNA molecular configurations in flows near adsorbing and nonadsorbing surfaces
    Lei Li
    Hua Hu
    Ronald G. Larson
    [J]. Rheologica Acta, 2004, 44 : 38 - 46
  • [29] Punching shear strength of flat slabs with different punching reinforcement configurations
    Kamanh, M.
    Ezer, I.
    Korkmaz, H. H.
    [J]. LIFE-CYCLE OF STRUCTURAL SYSTEMS: DESIGN, ASSESSMENT, MAINTENANCE AND MANAGEMENT, 2015, : 2068 - 2074
  • [30] DNA molecular configurations in flows near adsorbing and nonadsorbing surfaces
    Li, L
    Hu, H
    Larson, RG
    [J]. RHEOLOGICA ACTA, 2004, 44 (01) : 38 - 46