Degenerate Hopf bifurcations in the Lu system

被引:40
|
作者
Mello, Luis Fernando [1 ]
Coelho, Sinval Ferreira [1 ]
机构
[1] Univ Fed Itajuba, Inst Ciencias Exatas, BR-37500903 Itajuba, MG, Brazil
关键词
Degenerate Hopf bifurcations; Limit cycles; Lyapunov coefficients; CHAOTIC ATTRACTOR;
D O I
10.1016/j.physleta.2009.01.049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we study the stability and local codimension one, two and three Hopf bifurcations which occur in the Lu system. A description of the regions in the parameter space for which multiple small periodic solutions arise through the Hopf bifurcations at the equilibria is given. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1116 / 1120
页数:5
相关论文
共 50 条
  • [21] Hopf bifurcations in an extended Lorenz system
    Zhiming Zhou
    Gheorghe Tigan
    Zhiheng Yu
    Advances in Difference Equations, 2017
  • [22] Hopf bifurcations in an extended Lorenz system
    Zhou, Zhiming
    Tigan, Gheorghe
    Yu, Zhiheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [23] Lyapunov coefficients for degenerate Hopf bifurcations and an application in a model of competing populations
    Ferreira, Jocirei D.
    Gonzalez Nieva, Aida P.
    Molina Yepez, Wilmer
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 1 - 51
  • [24] A DYNAMICAL SYSTEM WITH HOPF BIFURCATIONS AND CATASTROPHES
    MURATORI, S
    RINALDI, S
    APPLIED MATHEMATICS AND COMPUTATION, 1989, 29 (01) : 1 - 15
  • [25] Degenerate Hopf bifurcations in a family of FF-type switching systems
    Chen, Xingwu
    Romanoyski, Valery G.
    Zhang, Weinian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (02) : 1058 - 1076
  • [26] Stability analysis of degenerate hopf bifurcations for discrete-time systems
    D'Amico, MB
    Paolini, EE
    Moiola, JL
    LATIN AMERICAN APPLIED RESEARCH, 2003, 33 (04) : 413 - 418
  • [27] Hopf and zero-Hopf bifurcations in the Hindmarsh–Rose system
    Claudio Buzzi
    Jaume Llibre
    João Medrado
    Nonlinear Dynamics, 2016, 83 : 1549 - 1556
  • [28] Hopf bifurcation analysis of the Lu system
    Yu, YG
    Zhang, SC
    CHAOS SOLITONS & FRACTALS, 2004, 21 (05) : 1215 - 1220
  • [29] DEGENERATE HOPF BIFURCATIONS VIA FEEDBACK-SYSTEM THEORY - HIGHER-ORDER HARMONIC-BALANCE
    MOIOLA, JL
    DESAGES, A
    ROMAGNOLI, J
    CHEMICAL ENGINEERING SCIENCE, 1991, 46 (5-6) : 1475 - 1490
  • [30] ON THE COMPUTATION OF LOCAL BIFURCATION DIAGRAMS NEAR DEGENERATE HOPF BIFURCATIONS OF CERTAIN TYPES
    Luis Moiola, Jorge
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1103 - 1122