Blow-up for a nonlocal parabolic equation

被引:1
|
作者
Liang Fei [1 ,2 ]
Li Yuxiang [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] An Hui Sci & Technol Univ, Dept Math, Feng Yang 233100, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal parabolic problem; Asymptotic behavior; Blow-up; THERMISTOR PROBLEM; DIFFUSION-EQUATIONS; BOUNDARY-BEHAVIOR; TIME; EXISTENCE;
D O I
10.1016/j.na.2009.02.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the blow-up properties of the radial solutions of the nonlocal parabolic equation u(t) = Delta u + lambda u(alpha)/(integral(B1)(u + 1)(-alpha)dx)(p), x is an element of B-1, t > 0, with homogeneous Dirichlet boundary condition, where lambda, p > 0, 0 < alpha <= 1. The criteria for the solutions to blow-up in finite time is given. It is proved that the blow-up is global and uniform for 0 < alpha < 1, global and nonuniform for alpha = 1. The blow-up rate of vertical bar u vertical bar(infinity) is also determined. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3551 / 3562
页数:12
相关论文
共 50 条