3D Shape Attributes

被引:9
|
作者
Fouhey, David F. [1 ]
Gupta, Abhinav [1 ]
Zisserman, Andrew [2 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[2] Univ Oxford, Dept Engn Sci, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
RECOGNITION;
D O I
10.1109/CVPR.2016.168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we investigate 3D attributes as a means to understand the shape of an object in a single image. To this end, we make a number of contributions: (i) we introduce and define a set of 3D Shape attributes, including planarity, symmetry and occupied space; (ii) we show that such properties can be successfully inferred from a single image using a Convolutional Neural Network (CNN); (iii) we introduce a 143K image dataset of sculptures with 2197 works over 242 artists for training and evaluating the CNN; (iv) we show that the 3D attributes trained on this dataset generalize to images of other (non-sculpture) object classes; and furthermore (v) we show that the CNN also provides a shape embedding that can be used to match previously unseen sculptures largely independent of viewpoint.
引用
收藏
页码:1516 / 1524
页数:9
相关论文
共 50 条
  • [1] From Images to 3D Shape Attributes
    Fouhey, David F.
    Gupta, Abhinav
    Zisserman, Andrew
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (01) : 93 - 106
  • [2] Accurate 3D Body Shape Regression using Metric and Semantic Attributes
    Choutas, Vasileios
    Mueller, Lea
    Huang, Chun-Hao P.
    Tang, Siyu
    Tzionas, Dimitrios
    Black, Michael J.
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2708 - 2718
  • [3] 3D GAUSSIAN DESCRIPTOR FOR 3D SHAPE RETRIEVAL
    Chaouch, Mohamed
    Verroust-Blondet, Anne
    [J]. ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 834 - 837
  • [4] On 3D shape similarity
    Shum, HY
    Hebert, M
    Ikeuchi, K
    [J]. 1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, : 526 - 531
  • [5] 3D SHAPE PERCEPTION
    SALACHGOLYSKA, M
    PIZLO, Z
    VYAIN, S
    STANDISH, J
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1993, 34 (04) : 1083 - 1083
  • [6] On 3D shape synthesis
    Shum, HY
    Hebert, M
    Ikeuchi, K
    [J]. IMAGE UNDERSTANDING WORKSHOP, 1996 PROCEEDINGS, VOLS I AND II, 1996, : 1103 - 1112
  • [7] 3D shape knowledge graph for cross-domain 3D shape retrieval
    Chang, Rihao
    Ma, Yongtao
    Hao, Tong
    Wang, Weijie
    Nie, Weizhi
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024,
  • [8] Transcoding across 3D shape representations for unsupervised learning of 3D shape feature
    Furuya, Takahiko
    Ohbuchi, Ryutarou
    [J]. PATTERN RECOGNITION LETTERS, 2020, 138 : 146 - 154
  • [9] Perceptual attributes of crosstalk in 3D images
    Seuntiëns, PJH
    Meesters, LMJ
    Ijsselsteijn, WA
    [J]. DISPLAYS, 2005, 26 (4-5) : 177 - 183
  • [10] Seismic attributes in 3D reservoir models
    不详
    [J]. JOURNAL OF PETROLEUM TECHNOLOGY, 1997, 49 (01): : 51 - 51