Approximation with polynomial kernels and SVM classifiers

被引:99
|
作者
Zhou, Ding-Xuan
Jetter, Kurt
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Hohenheim, Inst Angew Math & Stat, D-70593 Stuttgart, Germany
关键词
classification algorithm; regularization scheme; polynomial kernel; approximation by Durrmeyer operators; support vector machine; misclassification error;
D O I
10.1007/s10444-004-7206-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an error analysis for classification algorithms generated by regularization schemes with polynomial kernels. Explicit convergence rates are provided for support vector machine (SVM) soft margin classifiers. The misclassification error can be estimated by the sum of sample error and regularization error. The main difficulty for studying algorithms with polynomial kernels is the regularization error which involves deeply the degrees of the kernel polynomials. Here we overcome this difficulty by bounding the reproducing kernel Hilbert space norm of Durrmeyer operators, and estimating the rate of approximation by Durrmeyer operators in a weighted L-1 space (the weight is a probability distribution). Our study shows that the regularization parameter should decrease exponentially fast with the sample size, which is a special feature of polynomial kernels.
引用
收藏
页码:323 / 344
页数:22
相关论文
共 50 条
  • [21] On problems without polynomial kernels
    Bodlaender, Hans L.
    Downey, Rodney G.
    Fellows, Michael R.
    Hermelin, Danny
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2009, 75 (08) : 423 - 434
  • [22] Fast Learning With Polynomial Kernels
    Lin, Shaobo
    Zeng, Jinshan
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (10) : 3780 - 3792
  • [23] ON THE APPROXIMATION OF COVARIANCE KERNELS
    CADDEMI, S
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 1994, 9 (04) : 245 - 254
  • [24] Polynomial Kernels for Weighted Problems
    Etscheid, Michael
    Kratsch, Stefan
    Mnich, Matthias
    Roeglin, Heiko
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 287 - 298
  • [25] CONSTRUCTION OF EQUATIONS FOR POLYNOMIAL KERNELS
    KRACHT, M
    KREYSZIG, EO
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A514 - A514
  • [26] Polynomial kernels for weighted problems
    Etscheid, Michael
    Kratsch, Stefan
    Mnich, Matthias
    Roeglin, Heiko
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 84 : 1 - 10
  • [27] Eyes location by hierarchical SVM classifiers
    Li, YF
    Ou, ZY
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 611 - 615
  • [28] Evidential calibration of binary SVM classifiers
    Xu, Philippe
    Davoine, Franck
    Zha, Hongbin
    Denoeux, Thierry
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2016, 72 : 55 - 70
  • [29] Feature Shaping for Linear SVM Classifiers
    Forman, George
    Scholz, Martin
    Rajaram, Shyamsundar
    [J]. KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 299 - 307
  • [30] Ensemble of Multiple Kernel SVM Classifiers
    Wang, Xiaoguang
    Liu, Xuan
    Japkowicz, Nathalie
    Matwin, Stan
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2014, 2014, 8436 : 239 - 250