The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis

被引:4
|
作者
Oegema, TR [1 ]
Carpenter, RJ [1 ]
Hofmeister, F [1 ]
Thompson, RC [1 ]
机构
[1] UNIV MINNESOTA,DEPT BIOCHEM,MINNEAPOLIS,MN 55455
关键词
vascular invasion; osteoarthritis; cartilage; calcification;
D O I
10.1002/(SICI)1097-0029(19970515)37:4<324::AID-JEMT7>3.0.CO;2-K
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
The zone of calcified cartilage (ZCC) forms an important interface between cartilage and bone for transmitting force, attaching cartilage to bone, and limiting diffusion from bone to the deeper layers of cartilage. The height of the ZCC is a relatively constant percent of articular cartilage and the height is maintained by a balance between progression of the tidemark into the unmineralized cartilage and changing into bone by vascular invasion and bony remodeling. During its formation, the cells that form the ZCC have properties similar to the cells of the growth plate. In the adult, the ZCC becomes quiescent but not inactive. The ZCC may be reactivated in osteoarthritis and may progressively calcify the unmineralized cartilage. This might contribute to cartilage thinning which would increase the concentration of forces across the uncalcified cartilage leading to more damage. Although the subchondral bony plate remodels extensively in osteoarthritis, there is little evidence that a change in the biomechanics of the plate directly initiates the osteoarthritic process in cartilage. However, increased repair by endochondral ossification of vertical cracks in the ZCC that penetrate into the marrow space could contribute to progression via changes in the ZCC. (C) 1997 Wiley-Liss, Inc.
引用
收藏
页码:324 / 332
页数:9
相关论文
共 50 条
  • [21] CARTILAGE DAMAGE INVOLVING EXTRUSION OF MINERALISABLE MATRIX FROM THE ARTICULAR CALCIFIED CARTILAGE AND SUBCHONDRAL BONE
    Boyde, A.
    Riggs, C. M.
    Bushby, A. J.
    McDermott, B.
    Pinchbeck, G. L.
    Clegg, P. D.
    EUROPEAN CELLS & MATERIALS, 2011, 21 : 470 - 478
  • [22] Effect of exercise on thicknesses of mature hyaline cartilage, calcified cartilage, and subchondral bone of equine tarsi
    Tranquille, Carolyne A.
    Blunden, Antony S.
    Dyson, Sue J.
    Parkin, Tim D. H.
    Goodship, Allen E.
    Murray, Rachel C.
    AMERICAN JOURNAL OF VETERINARY RESEARCH, 2009, 70 (12) : 1477 - 1483
  • [23] Calcified cartilage morphometry and its relation to subchondral bone remodeling in equine arthrosis
    Norrdin, RW
    Kawcak, CE
    Capwell, BA
    McIlWraith, CW
    BONE, 1999, 24 (02) : 109 - 114
  • [24] The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria
    Taylor, A. M.
    Boyde, A.
    Wilson, P. J. M.
    Jarvis, J. C.
    Davidson, J. S.
    Hunt, J. A.
    Ranganath, L. R.
    Gallagher, J. A.
    ARTHRITIS AND RHEUMATISM, 2011, 63 (12): : 3887 - 3896
  • [25] β2-ADRENOCEPTOR DEFICIENCY LEADS TO INCREASED SUBCHONDRAL BONE REMODELING AND CALCIFIED CARTILAGE THICKNESS IN A MURINE KNEE OSTEOARTHRITIS MODEL
    Roesch, G.
    Muschter, D.
    Taheri, S.
    El Bagdadi, K.
    Dorn, C.
    Meurer, A.
    Zaucke, F.
    Schilling, A.
    Graessel, S.
    Straub, R.
    Jenei-Lanzl, Z.
    OSTEOARTHRITIS AND CARTILAGE, 2022, 30 : S39 - S39
  • [26] Hydroxyapatite maturity in the calcified cartilage and underlying subchondral bone of guinea pigs with spontaneous osteoarthritis: Analysis by Fourier transform infrared microspectroscopy
    Sato, M
    Wada, M
    Miyoshi, N
    Imamura, Y
    Noriki, S
    Uchida, K
    Kobayashi, S
    Yayama, T
    Negoro, K
    Fujimoto, M
    Fukuda, M
    Baba, H
    ACTA HISTOCHEMICA ET CYTOCHEMICA, 2004, 37 (02) : 101 - 107
  • [27] Varying development of femoral and tibial subchondral bone tissue and their interaction with articular cartilage during progressing osteoarthritis
    A. Lahm
    D. Dabravolski
    J. Rödig
    J. Esser
    C. Erggelet
    R. Kasch
    Archives of Orthopaedic and Trauma Surgery, 2020, 140 : 1919 - 1930
  • [28] Varying development of femoral and tibial subchondral bone tissue and their interaction with articular cartilage during progressing osteoarthritis
    Lahm, A.
    Dabravolski, D.
    Roedig, J.
    Esser, J.
    Erggelet, C.
    Kasch, R.
    ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 2020, 140 (12) : 1919 - 1930
  • [29] Regulation of subchondral bone and cartilage changes in two canine models of osteoarthritis
    Interma, Femke
    Sniekers, Yvonne
    Weinans, Harrie
    Vianen, Marieke E.
    Yocum, Sue A.
    Zuurmond, Anne-Marie M.
    DeGroot, Jeroen
    Lafeber, Floris P. J. G.
    Mastbergen, Simon C.
    ARTHRITIS AND RHEUMATISM, 2008, 58 (09): : S654 - S654
  • [30] Biomimetic Nanomaterials for Osteoarthritis Treatment: Targeting Cartilage, Subchondral Bone, and Synovium
    Gong, Xiaoshan
    Tang, Hao
    Dai, Jingjin
    Wang, Guoqiang
    Dong, Shiwu
    ADVANCED NANOBIOMED RESEARCH, 2024,