Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9

被引:2501
|
作者
Doench, John G. [1 ]
Fusi, Nicolo [2 ]
Sullender, Meagan [1 ]
Hegde, Mudra [1 ]
Vaimberg, Emma W. [1 ]
Donovan, Katherine F. [1 ]
Smith, Ian [1 ]
Tothova, Zuzana [1 ,3 ]
Wilen, Craig [4 ]
Orchard, Robert [4 ]
Virgin, Herbert W. [4 ]
Listgarten, Jennifer [2 ]
Root, David E. [1 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA USA
[2] Microsoft Res New England, Cambridge, MA USA
[3] Dana Farber Canc Inst, Div Hematol Malignancies, Boston, MA 02115 USA
[4] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO USA
关键词
GENETIC SCREENS; CELL-LINE; GENOME; CAS9; DNA; RAF; IDENTIFICATION; ENDONUCLEASE; SPECIFICITY; RESISTANCE;
D O I
10.1038/nbt.3437
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), one can reprogram Cas9 to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently devised sgRNA design rules to create human and mouse genome-wide libraries, perform positive and negative selection screens and observe that the use of these rules produced improved results. Additionally, we profile the off-target activity of thousands of sgRNAs and develop a metric to predict off-target sites. We incorporate these findings from large-scale, empirical data to improve our computational design rules and create optimized sgRNA libraries that maximize on-target activity and minimize off-target effects to enable more effective and efficient genetic screens and genome engineering.
引用
收藏
页码:184 / +
页数:12
相关论文
共 50 条
  • [31] Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity
    Anderson, Emily M.
    Haupt, Amanda
    Schiel, John A.
    Chou, Eldon
    Machado, Hidevaldo B.
    Strezoska, Zaklina
    Lenger, Steve
    McClelland, Shawn
    Birmingham, Amanda
    Vermeulen, Annaleen
    Smith, Anja van Brabant
    JOURNAL OF BIOTECHNOLOGY, 2015, 211 : 56 - 65
  • [32] Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing
    Charlier, Jeremy
    Nadon, Robert
    Makarenkov, Vladimir
    BIOINFORMATICS, 2021, 37 (16) : 2299 - 2307
  • [33] Machine Learning-Driven Prediction of CRISPR-Cas9 Off-Target Effects and Mechanistic Insights
    Bhardwaj, Anuradha
    Tomar, Pradeep
    Nain, Vikrant
    EUROBIOTECH JOURNAL, 2024, 8 (04): : 213 - 229
  • [34] Rational Engineering of CRISPR-Cas9 Nuclease to Attenuate Position-Dependent Off-Target Effects
    Zuo, Zhicheng
    Babu, Kesavan
    Ganguly, Chhandosee
    Zolekar, Ashwini
    Newsom, Sydney
    Rajan, Rakhi
    Wang, Yu-Chieh
    Liu, Jin
    CRISPR JOURNAL, 2022, 5 (02): : 329 - 340
  • [35] Evaluation of Homology-Independent CRISPR-Cas9 Off-Target Assessment Methods
    Chaudhari, Hemangi G.
    Penterman, Jon
    Huang, Elaine
    Spencer, Sarah J.
    Kokoris, Holly Whitton
    Flanagan, Nicole
    Ho, Tony W.
    Cradick, Thomas J.
    Kernytsky, Andrew
    MOLECULAR THERAPY, 2019, 27 (04) : 71 - 71
  • [36] Genetic variation may confound analysis of CRISPR-Cas9 off-target mutations
    Guanqun Wang
    Meijie Du
    Jianbin Wang
    Ting F. Zhu
    Cell Discovery, 4
  • [37] Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9
    Koo, Taeyoung
    Lee, Jungjoon
    Kim, Jin-Soo
    MOLECULES AND CELLS, 2015, 38 (06) : 475 - 481
  • [38] Genetic variation may confound analysis of CRISPR-Cas9 off-target mutations
    Wang, Guanqun
    Du, Meijie
    Wang, Jianbin
    Zhu, Ting F.
    CELL DISCOVERY, 2018, 4
  • [39] Evaluation of Homology-Independent CRISPR-Cas9 Off-Target Assessment Methods
    Chaudhari, Hemangi G.
    Penterman, Jon
    Whitton, Holly J.
    Spencer, Sarah J.
    Flanagan, Nicole
    Zhang, Maria C. Lei
    Huang, Elaine
    Khedkar, Aditya S.
    Toomey, J. Mike
    Shearer, Courtney A.
    Needham, Alexander W.
    Ho, Tony W.
    Kulman, John D.
    Cradick, T. J.
    Kernytsky, Andrew
    CRISPR JOURNAL, 2020, 3 (06): : 440 - 453
  • [40] Predicting CRISPR-Cas9 Off-target with Self-supervised Neural Networks
    Chen, Dong
    Shu, Wenjie
    Peng, Shaoliang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 245 - 250