Combined bioelectrochemical-electrical model of a microbial fuel cell

被引:16
|
作者
Recio-Garrido, Didac [1 ,2 ]
Perrier, Michel [1 ]
Tartakovsky, Boris [1 ,2 ]
机构
[1] Ecole Polytech, Dept Genie Chim, Ctr Ville, CP 6079 Succ, Montreal, PQ H3C 3A7, Canada
[2] Natl Res Council Canada, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
关键词
Microbial fuel cell; Dynamic model; Charge storage; Equivalent circuit; Multi-population; Intermittent connection; INTERMITTENT CONNECTION; BIOFILMS;
D O I
10.1007/s00449-015-1510-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Several recent studies demonstrated significant charge storage in electrochemical biofilms. Aiming to evaluate the impact of charge storage on microbial fuel cell (MFC) performance, this work presents a combined bioelectrochemical-electrical (CBE) model of an MFC. In addition to charge storage, the CBE model is able to describe fast (ms) and slow (days) nonlinear dynamics of MFCs by merging mass and electron balances with equations describing an equivalent electrical circuit. Parameter estimation was performed using results of MFC operation with intermittent (pulse-width modulated) connection of the external resistance. The model was used to compare different methods of selecting external resistance during MFC operation under varying operating conditions. Owing to the relatively simple structure and fast numerical solution of the model, its application for both reactor design and real-time model-based process control applications are envisioned.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 50 条
  • [11] Essential Data and Techniques for Conducting Microbial Fuel Cell and other Types of Bioelectrochemical System Experiments
    Logan, Bruce E.
    CHEMSUSCHEM, 2012, 5 (06) : 988 - 994
  • [12] Improved bioelectrochemical performance of MnO2 nanorods modified cathode in microbial fuel cell
    Junfeng Chen
    Kunqi Zhao
    Yiqun Wu
    Jinyu Liu
    Renjun Wang
    Yuewei Yang
    Yanyan Liu
    Environmental Science and Pollution Research, 2023, 30 : 49052 - 49059
  • [13] Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80°C
    Fu, Qian
    Fukushima, Naoya
    Maeda, Haruo
    Sato, Kozo
    Kobayashi, Hajime
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2015, 79 (07) : 1200 - 1206
  • [14] Plant/soil-microbial fuel cell operation effects in the biological activity of bioelectrochemical systems
    Valdez-Hernandez, Mirna
    Acquaroli, Leandro N.
    Vazquez-Castillo, Javier
    Gonzalez-Perez, Omar
    Heredia-Lozano, Julio C.
    Castillo-Atoche, Alejandro
    Sosa-Vargas, Lydia
    Osorio-de-la-Rosa, Edith
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 2715 - 2729
  • [15] Scaling up microbial fuel cells and other bioelectrochemical systems
    Logan, Bruce E.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (06) : 1665 - 1671
  • [16] Scaling up microbial fuel cells and other bioelectrochemical systems
    Bruce E. Logan
    Applied Microbiology and Biotechnology, 2010, 85 : 1665 - 1671
  • [17] KINETIC-MODEL OF A DEPOLARIZATION-TYPE BIOELECTROCHEMICAL FUEL-CELL
    DISALVO, EA
    VIDELA, HA
    ARVIA, AJ
    BIOELECTROCHEMISTRY AND BIOENERGETICS, 1979, 6 (04): : 493 - 508
  • [18] Enhanced electricity generation in direct glucose alkaline fuel cell combined with microbial fuel cell
    Lin, Songwei
    Zheng, Huamin
    Ma, Shuyue
    Chen, Xindi
    Li, Xin
    Luo, Haiping
    Liu, Guangli
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 89 : 790 - 798
  • [19] Bi-directional electrical characterisation of microbial fuel cell
    Degrenne, N.
    Ledezma, P.
    Bevilacqua, P.
    Buret, F.
    Allard, B.
    Greenman, J.
    Ieropoulos, I. A.
    BIORESOURCE TECHNOLOGY, 2013, 128 : 769 - 773
  • [20] Electrical analysis of compost solid phase microbial fuel cell
    Wang, Chin-Tsan
    Liao, Fan-Ying
    Liu, Kong-Sheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 11124 - 11130