Singular solutions for the constant Q-curvature problem

被引:8
|
作者
Hyder, Ali [1 ]
Sire, Yannick [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
基金
瑞士国家科学基金会;
关键词
Singular solutions; Q-curvature; Paneitz operator; ELLIPTIC THEORY; CONSTRUCTION; EQUATION;
D O I
10.1016/j.jfa.2020.108819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the construction of weak solutions to the singular constant Q-curvature problem. We build on several tools developed in the last years. This is the first construction of singular metrics on closed manifolds of sufficiently large dimension with constant (positive) Q-curvature. (C) 2020 Elsevier Inc. All rights reserved.
引用
下载
收藏
页数:39
相关论文
共 50 条
  • [21] On the prescribed Q-curvature problem in Riemannian manifolds
    Cruz, Flavio F.
    Cruz, Tiarlos
    MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 121 - 133
  • [22] Multiplicity results for constant Q-curvature conformal metrics
    Alarcon, Salomon
    Petean, Jimmy
    Rey, Carolina
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)
  • [23] Conformal metrics with constant Q-curvature for manifolds with boundary
    Ndiaye, Cheikh Birahim
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2008, 16 (05) : 1049 - 1124
  • [24] Constant Q-curvature metrics near the hyperbolic metric
    Li, Gang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03): : 591 - 614
  • [25] On the prescribed Q-curvature problem in Riemannian manifolds
    Flávio F. Cruz
    Tiarlos Cruz
    manuscripta mathematica, 2021, 165 : 121 - 133
  • [26] STRUCTURE OF CONFORMAL METRICS ON Rn WITH CONSTANT Q-CURVATURE
    Hyder, Ali
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (7-8) : 423 - 454
  • [27] Conformal metrics on 2m with constant Q-curvature
    Department of Mathematics, ETH Zurich, Ramistrasse 101, CH-8092 Zurich, Switzerland
    Att Aca Naz Lincei Cl Sci Fis Mat Nat Rend Lincei Mat Appl, 2008, 4 (279-292):
  • [28] In the search of Q-curvature
    Chang, Sun-Yung Alice
    REVISTA MATEMATICA IBEROAMERICANA, 2011, : 103 - +
  • [29] What is Q-Curvature?
    Chang, S. -Y. Alice
    Eastwood, Michael
    Orsted, Bent
    Yang, Paul C.
    ACTA APPLICANDAE MATHEMATICAE, 2008, 102 (2-3) : 119 - 125
  • [30] Algebraic topological methods for the supercritical Q-curvature problem
    Ndiaye, Cheikh Birahim
    ADVANCES IN MATHEMATICS, 2015, 277 : 56 - 99