An RNA-Seq based gene expression atlas of the common bean

被引:114
|
作者
O'Rourke, Jamie A. [1 ]
Iniguez, Luis P. [2 ]
Fu, Fengli [1 ]
Bucciarelli, Bruna [1 ,3 ]
Miller, Susan S. [1 ]
Jackson, Scott A. [4 ]
McClean, Philip E. [5 ]
Li, Jun [6 ]
Dai, Xinbin [6 ]
Zhao, Patrick X. [6 ]
Hernandez, Georgina [2 ]
Vance, Carroll P. [1 ]
机构
[1] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Genom, Cuernavaca 66210, Morelos, Mexico
[3] USDA ARS, Plant Sci Res Unit, St Paul, MN 55108 USA
[4] Univ Georgia, Ctr Appl Genet Technol, Athens, GA 30602 USA
[5] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58105 USA
[6] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
来源
BMC GENOMICS | 2014年 / 15卷
基金
美国国家科学基金会;
关键词
Phaseolus vulgaris cv Negro jamapa; Common bean; RNA-Seq; Symbiotic nitrogen fixation; Expression atlas; SRP046307; GENOME-WIDE IDENTIFICATION; MEDICAGO-TRUNCATULA; GLYCINE-MAX; TRANSCRIPTION FACTORS; NODULE DEVELOPMENT; NITROGEN-FIXATION; RHIZOBIAL INFECTION; MOLECULAR-CLONING; ARABIDOPSIS SEEDS; NITRATE TRANSPORT;
D O I
10.1186/1471-2164-15-866
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Common bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species. Results: Combining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change >= 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/. Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form. Conclusions: These data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the nitrogen source on assimilation and distribution throughout the plant.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] An RNA-Seq based gene expression atlas of the common bean
    Jamie A O’Rourke
    Luis P Iniguez
    Fengli Fu
    Bruna Bucciarelli
    Susan S Miller
    Scott A Jackson
    Philip E McClean
    Jun Li
    Xinbin Dai
    Patrick X Zhao
    Georgina Hernandez
    Carroll P Vance
    [J]. BMC Genomics, 15
  • [2] An RNA-Seq atlas of gene expression in mouse and rat normal tissues
    Julia F. Söllner
    German Leparc
    Tobias Hildebrandt
    Holger Klein
    Leo Thomas
    Elia Stupka
    Eric Simon
    [J]. Scientific Data, 4
  • [3] An RNA-Seq atlas of gene expression in mouse and rat normal tissues
    Soellner, Julia F.
    Leparc, German
    Hildebrandt, Tobias
    Klein, Holger
    Thomas, Leo
    Stupka, Elia
    Simon, Eric
    [J]. SCIENTIFIC DATA, 2017, 4
  • [4] The Physcomitrella patens gene atlas project: large-scale RNA-seq based expression data
    Perroud, Pierre-Francois
    Haas, Fabian B.
    Hiss, Manuel
    Ullrich, Kristian K.
    Alboresi, Alessandro
    Amirebrahimi, Mojgan
    Barry, Kerrie
    Bassi, Roberto
    Bonhomme, Sandrine
    Chen, Haodong
    Coates, Juliet C.
    Fujita, Tomomichi
    Guyon-Debast, Anouchka
    Lang, Daniel
    Lin, Junyan
    Lipzen, Anna
    Nogue, Fabien
    Oliver, Melvin J.
    Ponce de Leon, Ines
    Quatrano, Ralph S.
    Rameau, Catherine
    Reiss, Bernd
    Reski, Ralf
    Ricca, Mariana
    Saidi, Younousse
    Sun, Ning
    Szoevenyi, Peter
    Sreedasyam, Avinash
    Grimwood, Jane
    Stacey, Gary
    Schmutz, Jeremy
    Rensing, Stefan A.
    [J]. PLANT JOURNAL, 2018, 95 (01): : 168 - 182
  • [5] An mRNA expression atlas for the duck with public RNA-seq datasets
    Qiuyu Tao
    Anqi Huang
    Jingjing Qi
    Zhao Yang
    Shihao Guo
    Yinjuan Lu
    Xinxin He
    Xu Han
    Shuaixue Jiang
    Mengru Xu
    Yuan Bai
    Tao Zhang
    Shenqiang Hu
    Liang Li
    Lili Bai
    HeHe Liu
    [J]. BMC Genomics, 26 (1)
  • [6] On Differential Gene Expression Using RNA-Seq Data
    Lee, Juhee
    Ji, Yuan
    Liang, Shoudan
    Cai, Guoshuai
    Mueller, Peter
    [J]. CANCER INFORMATICS, 2011, 10 : 205 - 215
  • [7] Robustness of differential gene expression analysis of RNA-seq
    Stupnikov, A.
    McInerney, C. E.
    Savage, K. I.
    McIntosh, S. A.
    Emmert-Streib, F.
    Kennedy, R.
    Salto-Tellez, M.
    Prise, K. M.
    McArt, D. G.
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3470 - 3481
  • [8] A model based criterion for gene expression calls using RNA-seq data
    Wagner, Guenter P.
    Kin, Koryu
    Lynch, Vincent J.
    [J]. THEORY IN BIOSCIENCES, 2013, 132 (03) : 159 - 164
  • [9] A model based criterion for gene expression calls using RNA-seq data
    Günter P. Wagner
    Koryu Kin
    Vincent J. Lynch
    [J]. Theory in Biosciences, 2013, 132 : 159 - 164
  • [10] RiceNCexp: a rice non-coding RNA co-expression atlas based on massive RNA-seq and small-RNA seq data
    Zhang, Baoyi
    Fei, Yuhan
    Feng, Jiejie
    Zhu, Xueai
    Wang, Rui
    Xiao, Hanqing
    Zhang, Hongsheng
    Huang, Ji
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2022, 73 (18) : 6068 - 6077