1D Nanostructured Na7V4(P2O7)4(PO4) as High-Potential and Superior-Performance Cathode Material for Sodium-Ion Batteries

被引:118
|
作者
Deng, Chao [1 ]
Zhang, Sen [2 ]
机构
[1] Harbin Normal Univ, Coll Chem & Chem Engn, Minist Educ, Key Lab Photon & Elect Bandgap Mat, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
1D nanostructure; mixed-polyanion material; Na7V4(P2O7)(4)(PO4); intermediate phase; sodium ion battery; RECHARGEABLE BATTERIES; PYROPHOSPHATE CATHODE; LITHIUM; NA3V2(PO4)(3); VOLTAGE; PHASE; MN; FE;
D O I
10.1021/am501072j
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tailoring materials into nanostructure offers unprecedented opportunities in the utilization of their functional properties. High-purity Na7V4(P2O7)(4)(PO4) with 1D nanostructure is prepared as a cathode material for rechargeable Na-ion batteries. An efficient synthetic approach is developed by carefully controlling the crystal growth in the molten sodium phosphate. Based on the XRD, XPS, TG, and morphological characterization, a molten-salt assisted mechanism for nanoarchitecture formation is revealed. The prepared Na7V4(P2O7)(4)(PO4) nanorod has rectangle sides and preferential [001] growth orientation. GITT evaluation indicates that the sodium de/intercalation of Na7V4(P2O7)(4)(PO4) nanorod involves V3+/V4+ redox reaction and Na5V43.5+(P2O7)(4)(PO4) as intermediate phase, which results in two pairs of potential plateaus at the equilibrium potentials of 3.8713 V (V3+/V3.5+) and 3.8879 V (V3.5+/V4+), respectively. The unique nanoarchitecture of the phase-pure Na7V4(P2O7)(4)(PO4) facilitates its reversible sodium de/intercalation, which is beneficial to the high-rate capability and the cycling stability. The Na7V4(P2O7)(4)(PO4) cathode delivers 80% of the capacity (obtained at C/20) at the 10 C rate and 95% of the initial capacity after 200 cycles. Therefore, it is feasible to design and fabricate an advanced rechargeable sodium-ion battery by employment of 1D nanostructured Na7V4(P2O7)(4)(PO4) as the cathode material.
引用
收藏
页码:9111 / 9117
页数:7
相关论文
共 50 条
  • [41] Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries
    Hu, Fangdong
    Jiang, Xiaolei
    INORGANIC CHEMISTRY COMMUNICATIONS, 2021, 129
  • [42] Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries
    Jang, Jun Yeong
    Kim, Hyungsub
    Lee, Yongwon
    Lee, Kyu Tae
    Kang, Kisuk
    Choi, Nam-Soon
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 44 : 74 - 77
  • [43] Enhanced cycling stability of F-doped Na4Fe3(PO4)2P2O7 cathode material for sodium-ion batteries
    Cao, Yanyan
    Ma, Yongtao
    Yang, Zihao
    Xie, Xiangyang
    Huang, Wei
    Liu, Dongzhu
    Wang, Jiangtao
    Qin, Jian
    Li, Ming
    Wang, Jingjing
    Li, Wenbin
    Su, Yaqiong
    Li, Xifei
    JOURNAL OF POWER SOURCES, 2025, 635
  • [44] Na3V2(PO4)3: an advanced cathode for sodium-ion batteries
    Zhang, Xianghua
    Rui, Xianhong
    Chen, Dong
    Tan, Huiteng
    Yang, Dan
    Huang, Shaoming
    Yu, Yan
    NANOSCALE, 2019, 11 (06) : 2556 - 2576
  • [45] Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries
    Nose, Masafumi
    Shiotani, Shinya
    Nakayama, Hideki
    Nobuhara, Kunihiro
    Nakanishi, Shinji
    Iba, Hideki
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 266 - 269
  • [46] Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook
    Gezovic, Aleksandra
    Vujkovic, Milica J.
    Milovic, Milos
    Grudic, Veselinka
    Dominko, Robert
    Mentus, Slavko
    ENERGY STORAGE MATERIALS, 2021, 37 : 243 - 273
  • [47] Entropy-Driven Enhancement of the Conductivity and Phase Purity of Na4Fe3(PO4)2P2O7 as the Superior Cathode in Sodium-Ion Batteries
    Dai, Hongmei
    Xu, Yue
    Wang, Yue
    Cheng, Fangyuan
    Wang, Qian
    Fang, Chun
    Han, Jiantao
    Chu, Paul K.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (06) : 7070 - 7079
  • [48] An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries
    Liu, Xiaohao
    Tang, Linbin
    Li, Zhi
    Zhang, Jianhua
    Xu, Qunjie
    Liu, Haimei
    Wang, Yonggang
    Xia, Yongyao
    Cao, Yuliang
    Ai, Xinping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) : 18940 - 18949
  • [49] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Jafian, Samuel
    Hung, I-Ming
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (05) : 2582 - 2590
  • [50] Synthesis and Electrochemical Performance of the Na3V2(PO4)3 Cathode for Sodium-Ion Batteries
    Nguyen Van Nghia
    Samuel Jafian
    I-Ming Hung
    Journal of Electronic Materials, 2016, 45 : 2582 - 2590